
Accessing and Plotting FRED Data
This section provides an introduction to accessing and plotting the time-series data in the Federal
Reserve Economic Data (FRED) database. FRED provides an immense online repository of time-series
data from more than 100 sources. As a rather arbitrary choice, the examples below all use the GDPC1
series for real GDP. This brief introduction shows how to import plots from FRED, how to download
CSV data and create a dataset that is easy to plot, and how to import time-series data by means of the
FRED API.

Method 1: Import a Chart from FRED

The FRED website automatically provides plots of the time-series data in the FRED database. For
example, to examine the real GDP series GDPC1 on FRED, point a browser at https://fred.stlouis-
fed.org/series/GDPC1. If you would like to include the displayed chart in a Mathematica notebook, get
the “Image short URL” from the “Share Links” button. The Import command can import the chart with
this URL as follows.

In[796]:= Import["https://fred.stlouisfed.org/graph/fredgraph.png?g=BnZL",

ImageSize  Large]

Out[796]=

The basic FRED plots are very professional, but often additional data manipulation is desirable. FRED
provides facilities for common manipulations. For example, since the real GDP series grows over time,
a ratio scale would facilitate visual comparisons between initial periods and final periods in the plot.
To switch to a ratio scale, click the “Edit Graph” button and then the “FORMAT” tab, and then tick the
“Log scale” box. The new sharable link provided by the resulting plot will access the new chart.

https://fred.stlouisfed.org/series/GDPC1
https://fred.stlouisfed.org/series/GDPC1

In[797]:= Import["https://fred.stlouisfed.org/graph/fredgraph.png?g=Bo1c",

ImageSize  Large]

Out[797]=

The resulting charts are covered by the FRED Graphs License, which is quite liberal. Essentially, when
you share the charts, you must display the entire chart and acknowledge the source as follows:

FRED® Graphs ©Federal Reserve Bank of St. Louis. 2021. All rights reserved. All FRED® Graphs appear
courtesy of Federal Reserve Bank of St. Louis. https://fred.stlouisfed.org/

Method 2: Download CSV Data from FRED

The second approach has two steps: download the data from FRED in CSV format, and then import it as
a dataset. To follow along, first establish a folder for downloaded FRED data. This section calls it
fredFolder. We are going to use the “Download” button on the FRED chart to download the data in
CSV format. Do not transform the chart before downloading the data, unless you wish to download
transformed data. Download the GDPC1 data as CSV to fredFolder.

One disadvantage to this approach is that it involves downloading the data by hand. Currently it is
possible to automate the download by means of an HTTP GET request, using the series identifier as in
the following example. (Before attempting the following examples, assign a value to the fredFolder
variable.) Note the use of FileNameJoin to construct the full path to the new file.

In[798]:= request = "https://fred.stlouisfed.org/graph/fredgraph.csv?id=GDPC1";

filename = FileNameJoin[{fredFolder, "GDPC1.csv"}];

test = URLDownloadSubmit[request, filename]

Out[800]= TaskObject Task UUID: 3fad8e25-6622-43de-b6c8-a0aa43a1da5a
Task environment: External
Task type: Asynchronous



After constructing the path to the imported data, import the data in a notebook with
SemanticImport. This produces a Dataset, as follows.

2 Appendix_FRED.nb

In[801]:= data = SemanticImport[filename] (* quarterly data *)

Out[801]=

△

▽

DATE GDPC1

Wed 1 Jan 1947 2034.45

Tue 1 Apr 1947 2029.02

Tue 1 Jul 1947 2024.83

Wed 1 Oct 1947 2056.51

Thu 1 Jan 1948 2087.44

rows 1–5 of 299

The SemanticImport recognizes that the first column contains dates, and it correspondingly creates
a DateObject for each observation in the dataset. You can tell this by looking at the formatting when
the dataset displays in a notebook. The DateListPlot command works with dates and values orga-
nized like this in a dataset.

In[802]:= DateListPlot[data,

PlotTheme  "Default", AspectRatio  2 / 5]

Out[802]=

1960 1980 2000 2020
0

5000

10000

15000

20000

To switch to a ratio scale, use DateListLogPlot.

In[803]:= DateListLogPlot[data,

PlotTheme  "Default", AspectRatio  2 / 5]

Out[803]=

1960 1980 2000 2020

2000

5000

1×104

2×104

There is a disadvantage to this approach: recessions are not marked for us, and adding them is extra
work. (The NBER has the official business cycle dates.) However, there is an offsetting advantage: easy
data manipulation.

Transforming a Dataset

Appendix_FRED.nb 3

https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions

Before exploring data manipulation, it may be useful to briefly review the basic syntax for querying a
dataset. Use the Query command to retrieve data from a dataset. This command produces a function
that can be applied to a dataset to retrieve data. As a simple example, consider a query that retrieves
the the first record (i.e., row). To get the first record, apply Query[1] to the data. The expression
Query[1][data] accomplishes this, but it is more idiomatic to use the equivalent expression
Query[1]@data.

In[804]:= Query[1]@data

Out[804]=

DATE Wed 1 Jan 1947

GDPC1 2034.45

In order to illustrate the power of dataset queries, consider the goal of examining the data type in each
field (i.e., column) of this dataset. To display the data type of each field, construct a more complex
query based on the following goals: fetch the first record, and for each field, produce the data type of
the value. The Head command reports the data type, so apply apply Head to each field as follows. (As
shown below, this same approach works for any function, not just Head.)

In[805]:= Query[1, All, Head]@data

Out[805]=

DATE DateObject

GDPC1 Real

As a convenience, datasets may be directly applied to the query arguments. For example, to get the
first record, just use data[1]. This use of brackets with a dataset is supplementary syntax for a query
of the dataset; here it produces the first record (i.e., row). Use the same logic as before: query data for
the first record, all fields, and apply Head to each field. In other words, apply the dataset to the same
query arguments. So data[1,All,Head] produces the same result.

Finally, use a query to create a usefully transformed dataset. As a particularly simple example, convert
the GDP data from billions to trillions. The query Query[All,f] will apply the function f to each
record in the dataset, thereby producing a new transformed dataset. A very nice feature of datasets
that have strings as headers is that ordinary functions can refer directly to the headers. For example,
for any record from our dataset, the function Function[{#DATE,#GDPC1/1000}] will produce a list
from the DATE field and the GDPC1 field, appropriately deflating the latter. (Note the required
octothorpe; see the documentation of Function for an explanation.)

4 Appendix_FRED.nb

In[806]:= transform = Function[{#DATE, #GDPC1 / 1000}]; (* the desired transformation *)

query = Query[All, transform]; (* the associated query *)

DateListLogPlot[query@data,

FrameLabel  {"year", "trillions of chained dollars"}]

Out[808]=

1960 1980 2000 2020

2

5

10

20

year

tr
ill
io
ns
of
ch
ai
ne
d
do
lla
rs

Method 3: Use the FRED API

As a web service, FRED provides internet data access via the FRED API. In order to use this service, you
must first register for an account and then create an API key. You can then use the ServiceConnect
command to connect to FRED. (It will asked for an API key.) To make use of the resulting ServiceOb-
ject, be sure to bind a variable name to it.

In[809]:= fred = ServiceConnect["FederalReserveEconomicData"];

Although it is well documented, the syntax for querying the FRED database is not completely intuitive.
Initially it is easiest to just copy examples. For example, the following code fetches the information
about the GDPC1 series and stores it in a dataset with a single record, which can be queried by field
name. The subsequent query determines the units of the GDPC1 series.

In[810]:= info = fred["SeriesSearch", "Query"  "GDPC1"] ; (* returns only a description *)

info[1, "Units"]

Out[811]= Billions of Chained 2012 Dollars

Fetch the series data as follows. Instead of a Dataset, this produces a TimeSeries. This is a special
data type that provides a number of conveniences.

In[812]:= ts = fred["SeriesData", "ID"  "GDPC1"] (* returns the data as a TimeSeries *)

Out[812]= TimeSeries
Time: 01 Jan 1947 to 01 Jul 2021
Data points: 299



A particularly nice feature of a TimeSeries is that algebraic transformations affect the values but
leave the dates untouched. For example, to again change the units from billions to trillions, simply use
the expression ts/1000. As an example that begins to expose the power of this feature, plot a one-

Appendix_FRED.nb 5

https://fred.stlouisfed.org/docs/api/fred/
https://fredhelp.stlouisfed.org/fred/account/fred-account-features/register/
https://research.stlouisfed.org/docs/api/api_key.html
https://fred.stlouisfed.org/docs/api/fred/series.html

year moving average of the annualized growth rates of the quarterly data.

In[813]:= gdpGrowthRates = MovingAverage[Ratios[ts]^4 - 1, 4];

DateListPlot[gdpGrowthRates,

FrameLabel  {"year", "RGDP growth rate"}]

Out[814]=

1960 1980 2000 2020

-0.05

0.00

0.05

0.10

year

R
G
D
P
gr
ow
th
ra
te

The TimeSeries data type is so convenient that we may occasionally wish to extract data from a
Dataset in order to create a TimeSeries. As of version 12, the TimeSeries command requires a list
of time-value pairs and will not accept a dataset, so we must convert the data into such a matrix. Use
the Values command to discard the dataset headers, and then use the Normal command to convert
the headerless dataset to a matrix. The following example uses the dataset above, which contains only
the dates and real GDPs.

In[815]:= ts = TimeSeries[Normal@Values@data] (* convert Dataset to TimeSeries *)

Out[815]= TimeSeries
Time: 01 Jan 1947 to 01 Jul 2021
Data points: 299



6 Appendix_FRED.nb

