
This chapter will introduce you to some basic concepts and solution procedures in the theory of

differential equations. It is a “cookbook” in the sense that it lays out a useful solution algorithm that

can be followed with only minimal understanding of the underlying principles. However, much of the

required background is included in a condensed fashion, and some technical details are included in the

endnotes.

Most of our attention will be occupied by elaborations on the following observation: if ẋ(t) = Ax(t),

then x(t) = eAtx(0). This is already enough information to solve some differential equations.

Try Exercise #1 now.

If this is your first time through this chapter, please skip immediately to section 4 on the adjoint

matrix technique.

1 Fundamental Considerations

Definition: Consider the following first order system of differential equations.1

ẋ(t) = f [x(t), t] (1)

Here ẋ ≡ dx/dt and f(·) is a vector of n real valued functions. (We will think of t as representing time.)

Note: an n-th order differential equation,

y(n) = F [y(t), ẏ(t), . . . , y(n−1), t]

can always be written as a system of n first order differential equations by defining new variables xi =

y(i−1) so that

ẋ1 = x2, ẋ2 = x3, . . . , ẋn−1 = xn, ẋn = F [x1, x2, . . . , xn, t]

This is a system of n first order differential equations equivalent to the original n-th order equation. So

we often discuss only first order systems.

Definition: a solution to a differential equation system is a continuously differentiable function of time

that satisfies the differential equation system.2

1Here f : X ⊗ T → <n where X ⊆ <n and T = (ta, tb) ⊆ <.
2More precisely, we have the following definition:

The <n valued function φ(t) is called a solution on some time interval (t′, t′′) ⊂ T if

1. φ(t) ∈ X ∀t ⊂ (t′, t′′)

2. φ(t) is continuously differentiable

3. φ̇(t) = f [φ(t), t] almost everywhere on t ⊂ (t′, t′′)
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Comment: it is common for the dependence on time to be represented more explicity by a forcing

function or control function u(t).3 We will include this convention in our presentation of the fundamental

theorem in the theory of differential equations: the Cauchy-Peano Theorem.4

Theorem 1 (Cauchy-Peano)

If

ẋ(t) = f [x(t), u(t), t]

then there is a unique definite solution xd(t) that satisfies the initial condition that xd(to) = xo.5

Proof:

See Brock and Malliaris (1989), ch.1.

2 Linear Systems

Definition: Suppose that ẋ = f [x(t), t] can be written in matrix form as in equation (2).

ẋ(t) = A(t)x(t) + u(t) (2)

Here A(t) is a (possibly time varying) nxn matrix and ẋ(t), x(t) and u(t) are n × 1 vectors. We

call (2) a linear non-homogeneous system of differential equations. If u(t) ≡ 0, the linear system is

homogeneous (of degree one in x).

Try Exercise #2 now.

Comment: We are particularly interested in one key fact about linear homogeneous systems: if we

can find n linearly independent solutions then we can characterize all possible solutions.

Theorem:

IF Φ(t) is an n×n matrix whose columns are linearly independent solutions to the linear homogeneous

system ẋ(t) = A(t)x(t),

If we can find a solution on the entire time domain T , we call it a global solution.
3The forcing function u(t) can be vector valued so that u : T → <m.
4The theorem gives a set of sufficient conditions for ẋ = f [x(t),u(t), t] to have a solution, where f : X ⊗ <m ⊗ T →

<n, X ⊂ <n is open and connected, T = (ta, tb) ⊂ <. The following assumptions then ensure existence and uniqueness.

1. f is continuous on X ⊗<m ⊗ T (crucial for existence, may be slightly weakened)

2. ∂fi/∂xj exists and is continuous on X ⊗<m ⊗ T (useful for uniqueness; a Lipschitz condition suffices)

3. u(t) is piecewise continuous on T

4. (xo, to) ∈ X ⊗ T
These assumptions imply that, in some neighborhood of to, there is a locally unique solution xd(t) such that xd(to) = xo.
For linear systems (which need not have constant coefficients), the result is global.

5Definition: An initial condition is the requirement that the solution pass through specified point (xo, to) ∈ X ⊗ T .
That is, we require xd(to) = xo. We call xo the initial value and to the intial time.
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THEN any solution to the system can be written as Φ(t) · c for some vector of constants c.6

Proof: Since | Φ(t) |6= 0 we can consider Φ−1ψ for any solution ψ. Time differentiation yields

Φ̇−1ψ + Φ−1ψ̇. Now since ΦΦ−1 = I we know

Φ̇Φ−1 + ΦΦ̇−1 = 0

and thus

Φ̇−1 = −Φ−1Φ̇Φ−1

So

d(Φ−1ψ)/dt = Φ̇−1ψ + Φ−1ψ̇

= −Φ−1Φ̇Φ−1ψ + Φ−1ψ̇

= −Φ−1(AΦ)Φ−1ψ + Φ−1(Aψ)

= −Φ−1Aψ + Φ−1Aψ

= 0

Thus Φ−1ψ = c, or ψ = Φc, for some vector of constants c.

Comment: Although there are increasing numbers of exceptions, most economic applications of dif-

ferential equations sooner or later focus on the analysis of linear systems. In fact, we usually care about

problems where A(t) is not time varying. This cookbook therefore focuses on linear systems of constant

coefficients.

3 Constant Coefficients

Definition: If ẋ = f [x(t), t] can be written in the matrix form

ẋ(t) = Ax(t) + u(t) (3)

6If you wish to explore the notion of linear independence of solutions in more detail, see Brock and Malliaris p. 35,
Beavis and Dobbs p. 145, or Murata. In short, since any solution φ(t) is an n-vector we can apply our usual notion of linear
independence to a collection of solutions Φ(t) to discover if at a given time t they generate a set of vectors that are linearly
independent. However, we say that the solutions are linearly independent iff no linear combination is null for all admissible
t. It turns out that uniquenss of the initial value problem ensures that a collection of solutions is linearly dependent either
always or never, since the initial value of 0 produces the unique solution ψ(t) = 0 which is null at all t. Thus if at any t we
know Φ(t) · c = 0, recalling that you have shown as a HW that Φ(t) · c is a solution, then Φ(t) · c = 0 at all t.
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where A is an nxn matrix of constants and x(t) and u(t) are nx1 vectors it is called a linear system with

constant coefficients.

The general solution to (3) can be written as7

xg(t) = exp{At}k + exp{At} exp{−As}u(s)ds (4)

Here k is a vector of arbitrary constants. This solution is general in the sense that it is the functional

form that any solution must have. If in addition to equation (3) we are given an initial condition, we can

say even more. Then the unique definite solution to the initial value problem is:

xd(t) = exp{A(t− to)}xo + exp{At} exp{−As}u(s)ds (5)

This is a global solution because it satisfies (3) at every point in time, and it has a definite value determined

by the specified value of xo.

Try Exercise #3 now.

3.1 Proof of Uniqueness in the Linear Case with Constant Coefficients:

We can easily show the solution to the initial value problem is unique for any linear differential equation

system of constant coefficients if we know that the linear homogeneous system has a unique solution

satisfying a given initial condition.

Theorem: The initial value problem,

Solve ẋ(t) = Ax(t) such that x(to) = xo

has the unique definite solution:

x(t) = exp{A(t− to)}xo

Proof: See footnote.8

7Similar results obtain for the systems with non-constant coefficients, where exp{At} is replaced by a matrix of n linearly
independent solutions. In systems with constant coefficients exp{At} is such a matrix, but with time varying coefficents we
cannot just use exp{

∫
A(s)ds} except in special cases. See Brock and Malliaris ch.2.

8Proof: Differentiation proves that exp{At}xo is a solution. To prove this solution is unique, consider an arbitrary
solution ψ(t). Define y(t) by

y(t) ≡ exp{−At}ψ(t) (***)

Then

ẏ(t) = −A exp{−At}ψ(t) + exp{−At}ψ̇(t)

= exp{−At}(−A)ψ(t) + exp{−At}Aψ(t)

= exp{−At}(−A+A)ψ(t)

= 0

So y(t) is constant and, since y(0) = ψ(0), from the assumption that ψ(t) solves the initial value problem we know that
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Comment: By convention we usually set to = 0 and therefore write the unique solution to the initial

value problem in the homogeneous case as:

x(t) = exp{At}xo

We will use this uniqueness result to prove the uniqueness of the solution xd(t) to the initial value

problem for a non-homogeneous system. Define xp(t) to be a second solution to (3), in additon to xd(t)

as defined in (5) above, of the complete (non- homogenous) system with xp(to) = yo. Then (3) implies

that xp(t) − xd(t) solves a new homogeneous system: ẋ(t) = Ax with x(to) = yo − xo. Therefore,

we can use our uniqueness result for linear homogeneous first order systems to write xd(t) − xp(t) =

exp{A(t− to)}(xo − yo) = 0 if yo = xo [i.e., xp(t) = xd(t)]

This completes the proof that our solution (5) is in fact the unique solution to (3) that satisfies the

initial condition.

The uniqueness proof also provides a basis for an alternative solution technique: if we can find any

particular solution to (3), xp(t), then the definite solution, xd(t), can be written as that particular solution

plus a general solution to the homogeneous part that we call the complementary solution xc(t). In other

words,

xd(t)− xp(t) = exp{At}[xd(0)− xp(0)]

∴ xd(t) = xp(t) + exp{At}η

for some vector of constants, η. This suggests four steps to a solution.

1. find a general solution xc(t) to the homogeneous part (by general I mean a representation of all

possible solutions)

2. find a particular solution xp(t) to (3) (e.g., by guessing it has the same functional form as the

forcing function)

3. find a general solution to (3): xg(t) = xp(t) + xc(t).

4. find the unique definite solution xd(t) by solving for the constants, η, using the initial condition.

Try Exercise #4 now.

y(t) = xo. Therefore from (***),
ψ(t) = exp{At}xo

Q.E.D.
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Of course, in the multivariate case there remains the problem of calculating the matrix exponential

in (4), which can be difficult.9 In practice, we often find ad hoc solution proceedures most convenient.

The adjoint matrix technique is particularly useful.10

4 The Adjoint Matrix Technique

Consider the first-order linear differential equation

ẋ = Ax (8)

where A is square matrix of real constants. Suppose we can find a scalar λ with associated vector κ such

that Aκ = λκ.11 Then x = exp{λt}κ is a solution, since it implies ẋ = exp{λt}λκ = exp{λt}Aκ = Ax.

The adjoint matrix technique is just an elaboration on this observation. This technique allows us to

determine the general solution to the homogeneous part of a system of linear differential equations.

Consider a homogeneous system of linear differential equations (not necessarily first-order) with con-

stant coefficients:

P (D)x(t) = 0 (9)

where P (D) is a matrix of polynomials in D, the differential operator (i.e. Dx(t) = dx(t)/dt = ẋ(t),

D2x(t) = d2x(t)/dt2, etc). We want to find the general solution for this sytem. The following discussion

motivates the ultimate result in some detail, so you may find it useful on first reading to skip immediately

to equation (14).

Let λ be a constant and let v be any nonzero n× n matrix independent of t. Note that

P (D)eλtv ≡ eλtP (λ)v, (10)

9However if A has n distinct characteristic roots, we are in luck. Define

χ = [x1,x2, . . . ,xn] (6)

where Axi = λix
i, i.e., the xi and λi are the characteristic vectors and the characteristic roots of A. Then

χ−1Aχ = [λiδij ] ≡ D (7)

where δij =1
0

i=j
i 6=j is diagonal. Now define z(t) = χ−1x(t) and solve the transformed system:

ż(t) = Dz(t) + χ−1u(t)

with z(to) = χ−1xo; as above. This is easy since D is diagonal.
10See Murata, Yasuo, Mathematics for the Stability and Optimization of Economic Systems (New York: Academic Press,

1977) for additional details.
11If Aκ = λκ, we call λ an eigenvalue of A and κ is an associated eigenvector. The eigenvalues and eigenvectors

characterize many of the important properties of the matrix A. We find the set of eigenvalues by noticing (A − λI)κ = 0
only if det(A− λI) = 0, which is called the characteristic equation of A.
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Since P (λ) is a square matrix of constants, so is its adjoint P †(λ). Recall, P (λ)P †(λ) = |P (λ)| I.12

Then our last result implies

P (D)eλtP †(λ) = eλtP (λ)P †(λ)

= eλt|P (λ)|I
(11)

Now consider the characteristic equation of our differential equation system:

| P (λ) |= 0, (12)

where | P (λ) | is an nth order polynomial in the variable, λ.

The roots of this equation are called the characteristic roots of the differential equation system.

Choosing any root λi of the characteristic equation will give us

P (D) exp{λit}P †(λi) = 0 (13)

since |P (λi)| = 0. Thus, denoting by vi an arbitrary column of P †(λi), we know that exp{λit}vi is a

solution of the homogeneous system

P (D)x = 0 (14)

We will assume that all of the characteristic roots (the λis) of our differential equation system are

distinct.13 In this case, the general solution to P (D)x(t) = 0 is:

xc(t) =

n∑
i=1

ηie
λitP †j (λi) (15)

for arbitrary constants η, where λi is the ith root of |P (λ)| and P †j (λi) is the jth column of P †(D), the

12This is just expressing the determinant through expansion by cofactors. (Remember that an expansion by alien cofactors
is null.) Of course when the inverse exists P †(λ) = P (λ)−1|P (λ)|. However, we will care most about the case when the
inverse does not exist.

13In general, since repeated roots are not robust in the sense that they disappear with small changes in model parameters,
we are not very interested in the case of repeated roots. However, suppose there are k distinct roots λi(i = 1, . . . , k), each
with multiplicity ωi. In a manner similar to a single equation, we have the general solution of nonhomogeneous system (3)
as follows:

xg(t) = xp(t) +

k∑
i=1

ωi−1∑
si=0

cisivsi t
si exp{λit}

where xp(t) is a particular solution of (3), cisi stands for an arbitrary scalar and vsi (si = 0, 1, . . . , ωi − 1) are linearly
independent column vectors of P †(λi). If λi is a multiple root with multiplicity wi, then there exist wi linearly independent
columns in P †(λi)(at least in the cases that we will consider; see Murata 3.2 for specific restrictions, esp. Th.6 for some
details).
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adjoint matrix of P (D), with λi in the place of D.14 If the original system was non-homogeneous, then

the general solution can now be written as

xg(t) = xp(t) +

n∑
i=1

ηie
λitP †j (λi) (16)

and the unique definite solution can be found by solving for the arbitrary constants ηi using appropriate

boundary conditions.

xd(t) = xp(t) +

n∑
i=1

civi exp{λit} (17)

where vi satisfies P (λi) vi = 0.15

5 Stability

We call a system stable iff the complementary solution xc(t) must approach zero over time. Equivalently,

the general solution approaches a particular solution determined by u(t). From (5) we see immediately

that this is only assured when the real parts of all the λj are negative.16 Necessary and sufficient

conditions for this are known (see Murata 1977 on the modified Ruth-Hurwitz conditions). Economists

are most often interested in analytically solvable models, which practically speaking restricts us to models

generating three or fewer roots.

5.1 Single Root

The characteristic equation is λ+ a0 = 0, so λ = −a0. We have stability iff a0 > 0.

5.2 Two roots:

The characteristic equation is λ2 + a1λ+ a0 = 0. The roots can be found using the quadratic equation.

Stability obtains iff the real parts of the characteristic roots are negative, which is the case iff a1, a0 > 0.

14You will generally be able to choose the columns of the adjoint matrix P †(λi) arbitrarily: due to their linear dependence
this will only change the constants η in an offsetting manner and will have no effect on the definite solution. However, it is
possible to get a zero vector in P †(λi), and this (although still linearly dependent with the other columns) should obviously
not be used.

15Equivalently, if we have a first order system ẋ = Ax + u, then (λiI −A)vi = 0. I.e., the vi are characteristic vectors of
A.

16Remember, we are only considering the case of distinct roots. Let λj = aj + ibj . Then

exp{λjt} = exp{ajt} exp{ibjt}
= exp{ajt}(cos bjt+ i sin bjt)

Since cos bjt + i sin bjt is cyclical with constant amplitude, exp{λjt} converges to zero only if exp{ajt} does. That is, we
need aj < 0 for stability.
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Often, however, we hope the outcome will be a saddle-path: one root positive and one root negative.

This is the case when a0 < 0.

5.3 Three roots:

The characteristic equation is λ3 + a2λ
2 + a1λ + a0 = 0. The roots can be found in various ways. The

discussion in Beavis and Dobbs 160–162 is useful for this case.

6 Linear Approximation Systems

If at any time t we take a first order Taylor approximation to f [x(t)] around a point x̄, we get

f(xt)− f(x̄) ≈ A(xt − x̄)

where A is now the Jacobian matrix of f evaluated at x̄, i.e., the ij-th element of A is ∂fi(x̄)/∂xj . Now

suppose that ẋt = f(xt) and x̄t = f(x̄t) and define δx(t) ≡ x(t)− x̄(t). This gives us at each time t

˙δxt ≡ ẋt − ˙̄tx

= f(xt)− f(x̄t)

≈ At(xt − x̄t)

= Atδxt

We will choose x̄(t) so that f [x̄(t)] = 0. That is, we take our linear approximation around a stationary

state of the original system. Then we need not worry about changes in A, since x̄(t) is constant over

time, and we can focus on the following differential equation system.

˙δx = Aδx

Analysis of this system can be extremely informative. Stability of the resulting “linear approximation

system” is sufficient for the (local) stability of the original system! (Note: the converse is not true, i.e.,

a stable system may not have a stable linear approximation system. Thus it is not really appropriate to

use conditions stability of the linear approximation system in comparative statics arguments based on

Samuelson’s Correspondence Principle.)
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7 Summary

Economists often work with linear approximation systems. Suppose that ẋ(t) = f [x(t)] and define

δx(t) ≡ x(t) − x̄ where f(x̄) = 0. The linear approximation system ˙δx(t) = Aδx(t), a first order

differential equation system, has a general solution δx(t) = exp{At}η.

Here A is the Jacobian fx(x̄), and η = δxo if we are given the initial condition δx(0) = δxo. Since

finding exp{At} is often painful, we take advantage of the following observation. Take any eigenvalue λ

and associated eigenvector κ of the Jacobian matrix (so that Aκ = λκ), then δx = κ exp{λt} is a solution.

The adjoint matrix technique is just an elaboration on this observation. Consider a homogeneous

system of linear differential equations (not necessarily first-order):

P (D)δx(t) = 0

The characteristic equation of our differential equation system is

|P (λ)| = 0,

where | P (λ) | is an nth order polynomial in the variable λ. The roots of this equation are called the

characteristic roots of the differential equation system, and we assume they are all distinct. Let P †(λ)

denote the adjoint of P (λ). Then choosing any root λi of the characteristic equation will give us

P (D) exp{λit}P †(λi) = 0

since |P (λi)| = 0. Thus, denoting by P †j (λi) the (arbitrarily chosen) jth column of P †(λi),we know that

exp{λit}P †j (λi) is a solution of the homogeneous system. The general solution to P (D)δx(t) = 0 is:

δx(t) = ηie
λiP †j (λi)

for arbitrary constants η. The unique definite solution can be found by solving for the arbitrary constants

ηi using appropriate boundary conditions.

The system is stable iff δx(t) approaches zero over time. Stability therefore requires that all charac-

teristic roots have negative real parts.

So we basically have the following steps:
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1. Formulate the dynamic structural model

2. Linearize the model around a steady state

3. Express the linearized model as P (D)δx = 0

4. Find the characteristic roots of the system

5. Solve the system using the adjoint matrix technique

6. Solve for the ηi using appropriate boundary conditions

Exercises

1. a. Solve ẋ(t) = 5x(t) given x(0) = 2; and ẋ(t) = −3x(t) given x(0) = 20. b. Show that your

solutions work by differentiating them with respect to t. c. Graph your solutions for t = 1, 2, . . . , 10.

d. Make up four similar problems, two with A > 0 and two with A < 0, solve them, and graph

your solutions. e. What importance do you now place on the sign of A in such problems?

2. Show that if φ1(t) and φ2(t) are solutions to the a linear homogeneous system of differential

equations then so is any weighted sum of these two solutions. [Hint: Just differentiate φ(t) =

η1φ
1(t) + η2φ

2(t) and inspect your result, paying attention to the definition of a solution.]

3. Show equation (5) is a solution to equation (3) by differentiation.17 Hint: do not forget that the

fundamental theorem of calculus implies (d/dt)
∫
f(s)ds = f(t).

4. Solve ẋ = 3x+ 6 given xo = 5, ẋ = −18x+ 9 given x0 = 0; and ẋ = 5 given x0 = 2.

(Note that the forcing functions are of the form u(t) = k where k is a constant; therefore, guess

that your particular solution has this form too.) Check your solutions, and show all of your work.

17For this homework, you may work with the univariate case so that x and A are scalars. When x is a vector and A is a
matrix, the procedure is similar. To see this, recall that

exp{A} ≡ I +A+
A2

2!
+ . . . =

∑ Ai

i!
so,

d

dt
exp{At} = lim

h→0

exp{A(t+ h)} − exp{At}
h

= exp{At} lim
h→0

Ah− I
h

(*)

= exp{At}A
= A exp{At} (**)

∗ exp{A+B} = exp{A} exp{B} if and only if AB = BA (Proof in J.E. Woods, pg. 119). Note: this implies the matrix
exponential is invertible since exp{A−A} = I.
∗∗ Note that A commutes with each term in exp{At}.
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5. It is clear that (5) is a solution, but how do we know that it is the general solution, the representation

of all possible solutions? [Hint: consider the first order case, and peruse the theorems in this

chapter.]

6. Suppose a linear system of constant coefficients has a characteristic equation λ2 + a1λ + a0 = 0.

Show that the characteristic roots are opposite in sign iff a0 < 0, and show that they have negative

real parts iff a1, a0 > 0.
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