
[O]ur telescopic faculty is defective .... [W]e ... see future pleasures, as it
were, on a diminished scale .... [P]eople distribute their resources between the
present, the near future, and the remote future on the basis of a wholly irra-
tional preference .... The inevitable result is that efforts directed towards the
remote future are starved relatively to those directed to the near future, while
those in turn are starved relatively to efforts directed towards the present.
Pigou, Arthur Cecil. 1920. The Economics of Welfare (London: Macmillan),
p.25.

This reasonable view of Pigou’s is precisely what we will reject in our exploration of
the application of dynamic programming methods to the solution of economic problems.

1 Markov Chains

Markov chains often arise in dynamic optimization problems.

Definition 1.1 (Stochastic Process) A stochastic process is a sequence of random
vectors.

We will index the sequence with the integers, which is appropriate for discrete time
modeling.

Definition 1.2 (Markov Process) A stochastic process {xt} has the Markov Prop-
erty if

P{xt+1 | xt, xt−1, . . . , x0} = P{xt+1 | xt}

for any index t. A stochastic process with the Markov property is called a Markov
process .

Definition 1.3 (Transition Matrix) A vector of non-negative real numbers that sum
to unity is called a probability vector . A probability matrix is a matrix where each
row is a probability vector.1 A square probability matrix is called a transition matrix .

Definition 1.4 (Markov Chain) A time-invariant Markov chain is a discrete time
Markov process with constant transition probabilities. We characterize a Markov chain
by three objects: a state-space vector x̄ (giving the possible states of the process), a
probability vector π0 whose elements are the probabilities of being in each state initially,
and a transition matrix P whose element prk is the probabilities of transitioning from
state r to state k.

Since prk is the probability of being in state x̄k next period given state x̄r this period,
we can compute the probability of being in state x̄k two periods from now given state x̄r

1This is sometimes called a right probability matrix, where each column of a left probability matrix
is a probability vector.
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this period as follows:

P{xt+2 = x̄k | xt = x̄j} =
N∑
ν=1

P{xt+2 = x̄k | xt+1 = x̄ν}P{xt+1 = x̄ν | xt = x̄r}

=
N∑
ν=1

pνkprν =
N∑
ν=1

prνpνk = Pr·P·k

(1)

which is the r, k-th element of P 2.
So element r, k of the matrix P 2 gives the probability of moving from state x̄r to state

x̄k in two periods. This reasoning is easily extended across any number of periods. So we
can conclude that the unconditional probability vector for xt is

P{xt} = πτ0P
t (2)

Here we use the shorthand that P{xt} has as its r-th element the unconditional probability
that xt = x̄r.

2 Expected Utility

We begin with an exposition based on ljungqvist sargent p.45: compute the expected
lifetime utility V of an infinitely lived consumer:

V (ct, λt) = Et

∞∑
τ=t

βt−τu(cτ ) (3)

For the moment, we are not attempting any optimization: we specify that ct+1 = λt+1ct,
where λt be an n-state Markov process with possible values λ and associated transition
matrix P , 0 ≤ β ≤ 1, and Et is the expectation condition on information available at time
t (including the values of c and λ in periods t or earlier). Note that our definition of V
implies that we can restate this recursively

V (ct, λt) = Et

∞∑
τ=0

βτu(ct+τ )

= u(ct) + Et

∞∑
τ=0

βτ+1u(ct+1+τ )

= u(ct) + EtβEt+1

∞∑
τ=0

βτu(ct+1+τ )

= u(ct) + EtβV (ct+1, λt+1)

(4)

Suppose there is a solution of the form V (ct, λt) = u(ct)w(λt). (We will soon consider
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a situation where this is the case.) This would imply that

u(ct)w(λt) = u(ct) + βEtu(ct+1)w(λt+1) (5)

or
w(λt) = 1 + βEt[u(ct+1)/u(ct)]w(λt+1) (6)

So if u(ct+1)/u(ct) can be written as a simple function of λt+1, we end up with an easily
solved linear system.

For example, if utility is of the constant relative risk aversion functional form, so that
u(c) = c1−γ/(1 − γ), then u(ct+1)/u(ct) = (ct+1/ct)

1−γ = λ1−γ
t+1 , and we end up with the

following system
w(λt) = 1 + βEtλ

1−γ
t+1w(λt+1) (7)

or
w = 1 + βPdiag(λ)1−γw (8)

which has the solution
w =

(
I − βPdiag(λ)1−γ)−1

1 (9)

3 Optimization: Current versus Future Consump-

tion

We begin with a particularly simple problem. A consumer has assets kt from which
to consume this period, t, and next period, t + 1. After consuming ct this period, the
consumer carries forward kt − ct in savings, which becomes

kt+1 = R(kt − ct) (10)

next period, based on the gross interest rate R. More generally, we can allow kt+1 =
g(kt, ct) subject to mild restrictions on g.

Let Vt+1(kt+1) represent the consumer’s future utility (i.e., next period payoff) from
that kt+1 in wealth. At this point we do not know anything else about the function V .
Looking forward from period t, the consumer discounts this payoff to βVt+1(kt+1). Here
β is a discount factor, with 0 < β < 1 representing the idea that a current payoff is worth
more than a future payoff, ceteris paribus. We can represent the consumer’s objective
function in period t as

u(ct) + βVt+1

(
kt+1

)
(11)

The consumer will choose ct so as to make the objective function as large as possible,
subject to the budget constraint (10).

Substituting the budget constraint that kt+1 = R(kt − ct) into the objective function,
we can represent the consumer’s objective function in period t as

u(ct) + βVt+1

(
R(kt − ct)

)
(12)
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The consumer will choose ct so as to make the objective function as large as possible. The
optimal value of the objective function depends on the consumer’s initial wealth, so let
us write this optimal value as Vt(kt). That is, we define

Vt(kt) ≡ max
ct
{u(ct) + βVt+1

(
R(kt − ct)

)
} (13)

We will call Vt(kt) the value of kt. Clearly Vt is just an indirect utility function. As an
indirect utility function, it does not depend on ct. We will refer to this characterization
of the indirect utility function as a Bellman equation.

A consumer seeking the optimal value of the objective function must make the best
trade-off between the utility of current consumption, u(ct), and the reduction in future
utility (due to lower wealth) caused by higher consumption today. That is, an optimizing
consumer must satisfy the first-order condition

u′ −RβV ′t+1 = 0 (14)

This first-order condition nicely characterizex a necessary condition for optimization: the
benefit from one more unit of consumption, u′, must just balance the cost of having R
fewer units to consumer next period, RβV ′. We can think of the Bellman equation as the
result of solving (14) for the optimal level of consumption, ĉ, and plugging that into (12).

Ideally, we would put this information to work do determine consumption as a function
of the current state. We could then simulate the behavior of the economy, starting from
an initial state k0, as follows:

� determine ct = h(kt)

� determine kt+1 = g(kt, ct)

4 An Application to Optimal Growth

The following is based on brock mirman1972 and ljungqvist sargent p.33. A planner wants
to maximize

∞∑
t=0

βt ln(ct) (15)

subject to
kt+1 = Akαt − ct (16)

Bellman equation:
V
(
kt
)

= max
ct

{
ln(ct) + βVt+1

(
Akαt − ct

)}
(17)

First order condition:
1/ct = βV ′t+1 (18)

which implies that
V ′t+1 = 1/ctβ (19)
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Envelope condition:
V ′t = αAkα−1βV ′t+1 (20)

into which we substitute from the FOC to get

V ′t = αAkα−1
t /ct (21)

so that
V ′t+1 = αAkα−1

t+1 /ct+1 (22)

which we substitute back into the FOC to get

1/ct = βαAkα−1
t+1 /ct+1 (23)

4.1 Computing the Solution

ljungqvist sargent p.32 discuss three methods for solving dynamic programs.

Guess and verify In a few cases with unique solutions, we may be lucky enough to be
able to guess the solution and verify it.

Value function iteration Recall that a function is just a collection of ordered pairs.
Computationally function iteration is generally going to mean characterizing the function
with a finite set of points.

Letting Vi now represent our value function at the i-th iteration, we would have

Vi+1(k) = max
c

{
u(c) + βVi

(
g(k, c

)}
(24)

for a given value of k.

Policy function iteration Policy function iteration is often faster than value function
iteration. A common approach is Howard’s improvement algorithm. We initialize the
algorithm by finding a feasible initial policy h0, and then iterate to convergence over the
following two steps

� compute value of current policy: Vhi
=
∑∞

t=0 β
tu(hi) subject to the transition equa-

tion kt+1 = g(kt, ct).

� compute a new policy hi+1 as the solution to the following two period problem:

max
c
u(c) + βV hi

(
g(kt, ct)

)
4.2 Application to our growth problem

Value function iteration Initialize V0(k) = 0.
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Iterative step 1:
V1(k) = max

c

{
ln(c) + βV0

(
Akα − c

)}
(25)

In this first step, we impose that next period’s capital stock cannot be negative, so we
get c = Akα and thus

V1(k) = ln
(
Akα

)
= lnA+ α ln k (26)

Iterative step 2:

V2(k) = max
c

{
ln(c) + β[lnA+ α ln(Akα − c)]

}
(27)

FOC:
1/c− αβ/(Akα − c) = 0 (28)

c = Akα/(1 + αβ) (29)

with the implied value function

V2(k) = ln (Akα/(1 + αβ)) + β[lnA+ α ln(αβAkα/(1 + αβ))]

= ln (A/(1 + αβ)) + β lnA+ αβ ln(αβA/(1 + αβ)) + α(1 + αβ) ln(k)
(30)

Iterative step 3:

V3(k) = max
c

{
ln(c) + β[constant + α(1 + αβ) ln(Akα − c)]

}
(31)

FOC:
1/c− αβ(1 + αβ)/(Akα − c) = 0 (32)

c = Akα/(1 + αβ + α2β2) (33)

At this point we can see that c is iterating toward c∗ = (1 − αβ)Akα, and that the
value function will be of the form

V (k) = Π0 + Π1 ln(k) (34)

We can also see a pattern developing for the value function, which determines these
two constants. But let us use this opportunity to apply the method of undetermined
coefficients, the second method we will illustrate for determining the value function and
optimal “policy”. Here Π0 and Π1 are undetermined coefficients. The associated Bellman
equation is therefore

Π0 + Π1 ln(k) = max
c
{ln(c) + β[Π0 + Π1 ln(Akα − c)]} (35)

Look at the associated FOC:

1/c = βΠ1/(Ak
α − c) (36)

6



or
c = Akα/(1 + βΠ1) (37)

Plug this back into the Bellman equation to get the identity

Π0 + Π1 ln(k) = ln(Akα/(1 + βΠ1)) + β[Π0 + Π1 ln(βΠ1Ak
α/(1 + βΠ1))]

= ln(A/(1 + βΠ1)) + βΠ0 + βΠ1 ln(βΠ1A/(1 + βΠ1))]α(1 + βΠ1) ln(k)

(38)

This is an identity: it must hold for any value of k. So we must have

Π1 = α(1 + βΠ1) (39)

or
Π1 = α/(1− αβ) (40)

Exercise 1
Show that

Π0 =
1

1− β

(
lnA(1− αβ) +

αβ

1− αβ
lnαβA

)
(41)

OK, let us return to a consideration of our optimal consumption:

c∗t = (1− αβ)Akαt (42)

so that
k∗t+1 = αβAkαt (43)

So the optimal policy is for capital to evolve according to this nonlinear, first-order dif-
ference equation. Convergence is ensured by the standard presumption that 0 < α < 1,
so we can talk of a steady state where

k∗ss = αβAkαss (44)

or
k∗ss =

(
αβA

)1/(1−α)
(45)

5 An Application to Consumption

Consider an infinitely lived consumer who retains undiminished capacity to enjoy con-
sumption, as represented by the unchanging untility function u. We capture this in the
following objective function:

max E0

∞∑
t=0

βtu(ct) (46)
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The consumer is subject to the transition equation

kt+1 = Rt(kt + Yt − ct) (47)

which tells us how wealth evolves over time. (We think of Yt as disposable income, and
R = (1 + r) is the gross real interest rate.) The crucial point is that today’s consumption
affects tomorrow’s wealth.

We want to characterize the value of consuming optimally today and in the future,
as this depends on our current wealth. The key observation is that, if we are behaving
optimally, the value of our wealth today can be broken into the benefit derived from
current consumption and the benefit derived from next period’s wealth. Since this is an
infinite horizon problem, we get a particularly simple representation: the function V is
not time dependent.

V (kt, . . . ) = max
ct
{u(ct) + βEtV (kt+1, . . . )} (48)

The best we can do today is to pick consumption so as to make the optimal trade-
off between current utility and future utility. This trade-off shows up in the effect of
consumption on future wealth, as captured by the transition equation. The Bellman
equation is our representation of this trade-off:

V (kt, . . . ) = max
ct
{u(ct) + βEtV [Rt(kt + Yt − ct), . . . ]} (49)

Note how we substituted for future wealth from the transition equation in order to obtain
the Bellman equation. We will associate a first order condition and an envelope condition
with the Bellman equation.

Note that on the right hand side of the Bellman equation we have an indirect objective
function: the right hand side is not a function of c. The first order condition is associated
with the terms within the braces: it represents a condition that must hold given that
consumption has been set to its optimal level.

u′(ct)− βEtRt
∂V

∂kt+1

= 0 (50)

Again, we are not differentiating both sides with respect to ct to get this first order
condition. Rather is it the term within the braces that we are differentiating. The FOC
just says that consuming wealth today or getting the expected payoff from saving it must
be equally good options at the margin.

Recall the envelope theorem says that, at an optimum, the partial response of the
objective function to a parameter change is equal the change in its optimal value. That
is, we can safely ignore the changes in the optimal value of the choice variable. We will
be interested in the effect of a change in wealth. The envelope condition is

∂V

∂kt
= βEtRt

∂V

∂kt+1

(51)
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We see we can replace the right hand side of the envelope condition (51) by substituting
from the first order condition (50).

∂V

∂kt

FOC
= u′(ct) (52)

So the value of an additional unit of wealth today equals the marginal utility of current
consumption.

This observation allows us to replace the right hand side of the first order condi-
tion, producing a relationship that links the choice variable in successive periods. This
relationship is known as the Euler equation.

u′(ct) = βEtRtu
′(ct+1) (53)

The interpretation of the Euler equation is very natural. At the optimum, you must be
indifferent between consuming an additional unit of wealth today and waiting for the
expected payoff from consuming it tomorrow.

Note what we have done and what we have not. We have characterized an important
property of the optimal consumption path—one that can be used in empirical tests.
However, we have not solved for the optimal level of consumption. More precisely, we
have not solved for the “policy function” that would express ct as a function of kt.

5.1 The Euler Equation: Special Cases

Hall (1978 JPE) considers the case where income is the only source of uncertainty. When
the interest rate is non-stochastic we have the relationship

Etu
′(ct+1) =

1

βRt

u′(ct) (54)

emphasized by Hall (1978 JPE). This suggests the regression equation

u′(ct+1) =
1

βRt

u′(ct) + εt (55)

where Etεt+1 = 0.
That is, except for a trend contributed by β and R, marginal utility is expected to be

the same this period and next period. Or as Hall (1978 JPE, p.971) puts it, “Optimization
on the part of consumers is shown to imply that the marginal utility of consumption
evolves according to a random walk with trend.” The key implication that Hall will
pursue is that current consumption is a sufficient statistic for future consumption: no
other current variables should help in forecasting future consumption. To put it another
way (p.972): “In a forecasting model, consumption should be treated as an exognenous
variable.”

Hall (p.971) adds, “To a reasonable approximation, consumption itself should evolve
in the same way.” That is, if we regress consumption on its past values and other past
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variables, the only significant variable should be the one-period lag of consumption. Note
that this addresses past variables; it does not rule out the importance of current income
if that is added to the regression. Why? Because current income can contain new infor-
mation about permanent income.

5.2 Hall (1978 JPE)

5.2.1 Constant Elasticity of Substitution

Let u(c) = c(σ−1)/σ implying u′(c) = σ−1
σ
c−1/σ. The Euler equation with non-stochastic R

then implies

Etc
−1/σ
t+1 =

1

βRt

c
−1/σ
t (56)

Hall (1978 JPE) considers three cases: σ = 2, 1,−1.
Note that if σ = −1 we have u(c) = c2 so that u′(c) = 2c. This is the case of quadratic

utility, although we usually turn to a slight modification in order to get declining marginal
utility of consumption.

5.2.2 Quadratic Utility

Let u(c) = −(c̄− c)2/2 implying u′(c) = c̄− c.

c̄− ct = βEtRt(c̄− ct+1) (57)

Note u′(c) = (c̄− c). Here c̄ is Bliss Level. Solving for Etct+1 we get

βEtRtct+1 = c̄(βR− 1) + ct (58)

Consider the case where R is constant.

Etct+1 = c̄(1− 1/βR) + (1/βR)ct

= bo + b1ct
(59)

This suggests a natural regression equation, if we can get data on ct.

ct+1 = bo + b1ct + εt (60)

This is Hall’s result that consumption follows a martingale with drift.2 This suggests
that ct tells us everything useful that can be know about ct+1 at time t. Adding other
variables known at time t shouldn’t help predict ct+1. For example, it shouldn’t help
to add income or government expenditure, or even expected future income or expected
government expenditure.

2A true martingale xt satisfies Et∆xt+1 = 0; consider for example a random walk process. So we use
the term here more loosely to accommodate any process where the current value fully determines the
expected future value. In the special case considered below, where β = R, consumption follows a true
martingale.
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5.2.3 Special Case: β = R−1

From the budget constraint, the present value of consumption must equal the present
value of income plus current wealth.

Et

∞∑
τ=t

1

Rτ−t cτ = kt + Et

∞∑
τ=t

1

Rτ−tYτ (61)

Looking at (59) and considering the special case where the rate of time preference equals
the rate of interest, Etct+1 = ct. So, recalling

∑∞
i=0 a

i = 1/(1 − a), we can rewrite the
budget constraint as

ct =
R− 1

R

[
kt + Et

∞∑
τ=t

1

Rτ−tYτ

]
(62)

This in turn implies

ct+1 =
R− 1

R

[
kt+1 + Et+1

∞∑
τ=t+1

1

Rτ−t−1
Yτ

]
(63)

Etct+1 = Et
R− 1

R

[
kt+1 + Et+1

∞∑
τ=t+1

1

Rτ−t−1
Yτ

]
(64)

So

ct+1 − Etct+1 =
R− 1

R
[kt+1 − Etkt+1] +

R− 1

R
(Et+1 − Et)

∞∑
τ=t+1

1

Rτ−t−1
Yτ (65)

But wealth is a predetermined variable, so Etkt+1 = R(kt + Yt − ct) = kt+1, and we have
seen that Etct+1 = ct.

ct+1 − ct =
R− 1

R
(Et+1 − Et)

∞∑
τ=t+1

1

Rτ−t−1
Yτ (66)

This is just an expression for the change in the level of consumption. The change in
consumption is the annuity value of the change in the discounted present value of expected
future income.

So we should not see any change in consumption in response to fully anticipated
changes in income: that is, there should be no excess sensitivity. Also, we should see a
full response of consumption to changes in permanent income: there should be no excess
smoothness. We will look at some empirical work testing these hypotheses, but first we
will reconsider Aschauer’s definition of consumption.

5.3 Aschauer (1985 AER): c∗t = ct + θGt

Bailey (1971) first (?) proposed that a unit of publically provided goods and services
can be valued as θ units of private consumption, with 0 < θ < 1. In this case, we let
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c∗ = c+ θG represent “effective” consumption, and our objective function becomes

max E0

∞∑
t=0

βtu(c∗t ) (67)

Note dc∗t/dct = 1. Convince yourself that the transition function (47) is equivalent to
Aschauer’s eqn 3. The Bellman equation is therefore

V (kt, . . . ) = max
ct
{u(c∗t ) + βEtV [Rt(kt + Yt − ct), . . . ]} (68)

with associated Euler equation

u′(c∗t ) = βEtRtu
′(c∗t+1) (69)

In the case of quadratic utility, we find (following our analysis of Hall above)

Etc
∗
t+1 = c̄∗(1− 1/βR) + (1/βR)c∗t

= bo + b1c
∗
t

(70)

Hall (1978 JPE) assumes all utility is derived from direct consumption expenditures:
θ = 0.

Aschauer (1985 AER) asks whether C responds to

1. G? i.e., Does part of G substitute for c? Answer: yes, but not much.

2. Tax vs. debt financing? Answer: no.

Aschauer assumes c∗t = ct + θGt where 0 < θ < 1, so in the quadratic utility case we
have

Et(

c∗t+1︷ ︸︸ ︷
ct+1 + θGt+1) = bo + b1(

c∗t︷ ︸︸ ︷
ct + θGt) (71)

Etct+1 = bo + b1ct + b1θGt − θEtGt+1 (72)

We would like to run the regression

ct = bo + b1ct−1 + b1θGt−1 − θGe
t + ut (73)

But we don’t observe Ge
t . Following fairly standard practice, assume the data generating

process for Gt can be modeled as depending on previous spending patterns and deficits.

Gt = γ + e(L)Gt−1 + w(L)Dt−1 + vt (74)

where vt ∼WN so that
Ge
t = γ + e(L)Gt−1 + w(L)Dt−1
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Table 1: Aschauer’s Table 3: FIML Results for his Equations 15

1948:I to 1981:IV with n = 2,m = 1.
Constrained Unconstrained Hypothesized

α = 1.370
(.121)

δ = 1.930
(1.239)

δ = 1.068

β = 1.002
(.001)

β = .990
(.002)

β= 1.002

θ = .231
(.113)

η1 = −0.26
(.057)

η1 = −.093

γ = 1.308
(.654)

η2 = .037
(.056)

η2 = .090

ε1 = 1.404
(.075)

µ1 = −.029
(.015)

µ1 = −.014

ε2 = −.403
(.075)

γ = 1.278
(.150)

γ = 1.308

ω1 = .061
(.016)

ε1 = 1.442
(.075)

ε1 = 1.404

hC = 1.340 ε2 = −.441
(.075)

ε2 = −.403

hG = .010 ω1 = .049
(.018)

ω1 = .061

R̄2
C = .998 R̄2

C = .999
R̄2
G = .998 R̄2

G = .998
+2 loge(Lr/Lu) = 4.280

α: our b0, the constant from consumption function
β: our b1, the coefficient on ct−1 from consumption function
γ: the constant from G regression
θ: the substitution coefficient of interest, the weight on Gt in
utility function
hC : Durbin-h for consumption equation
hG: Durbin-h for G equation

Substituting for Ge
t , we get

ct = δ + b1ct−1 + η(L)Gt−1 + µ(L)Dt−1 + ut (75)

where

δ = bo − θγ
η1 = θ(b1 − e1)
ηi = −θei i = 2, . . . , n

µj = −θwj j = 1, . . . ,m

(76)

Estimate (74) and (75) by FIML (imposing cross equation restrictions). Aschauer reports
the results in his Tables 2 and 3.

Key results:
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θ small but significant;
b1 ≈ 1;
the RatEx constraints (76) are satisfied so that deficits only matter by affecting projected
G (Ricardian equivalence supported to this extent; c doesn’t respond to a change in
method of finance.)
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6 Portfolio Allocation with a Risk Free Asset

In this case, Rt = R(1− ωt) + Ztωt.

� one risk free asset with gross return R

� one risky asset with gross return Zt = Z̄ + εt

� new control variable: fraction ω of portfolio in risky asset

Before looking at the implications in a dynamic programming framework, consider a
very simple case. At the beginning of the period you have one unit of wealth to allocate
among the two assets, and you will derive (increasing, concave) utility by consuming the
end of period value.

max
ω

Eu
(
ωZ + (1− ω)R

)
(77)

Time is really irrelevant in this simple version, so we have dropped all time subscripts.
The first order condition is

Eu′ · (Z −R) = 0 (78)

Since R is non-stochastic, we can rewrite this as

Eu′ · Z = REu′ (79)

Recalling that Exy = ExEy + cov(x, y),

Eu′ EZ + cov(u′, Z) = REu′ (80)

EZ = R− cov(u′, Z)

Eu′
(81)

This is the core equation of the consumption CAPM. In this simple setting we expect Z
and u′ to be negatively correlated, implying that the consumer must be compensated (by
a higher average return) if she is to hold the risky asset.

Now let us move to a dynamic setting.
Objective:

max
ω,c

E0

T+1∑
t=0

βtu(ct) s.t. kt+1 = (kt − ct)[R(1− ωt) + Ztωt] (82)

Define the state variable: kt with transition equation

kt = (kt−1 − ct−1)[R(1− ωt−1) + Zt−1ωt−1] (83)

Define the control vector: (ct, ωt)
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Bellman’s Equation:

Vt(kt) = max
ωt,ct

u(ct) + βEtVt+1{
kt+1︷ ︸︸ ︷

(kt − ct)[R(1− ωt) + Ztωt]}

 (84)

First order conditions:

c : u′(ct)− βEt[

Rt︷ ︸︸ ︷
R(1− ωt) + Ztωt]∂Vt+1/∂kt+1 = 0 (85)

ω : βEt[Zt −R]∂Vt+1/∂kt+1 = 0 (86)

Envelope condition:

∂Vt/∂kt = βEt[R(1− ωt) + Ztωt]∂Vt+1/∂kt+1

FOC
= u′(ct)

(87)

Therefore we can rewrite the FOCs as

u′(ct)− βEt[R(1− ωt) + Ztωt]u
′(ct+1) = 0 (88)

βEt[Zt −R]u′(ct+1) = 0 (89)

which give us

u′(ct) = βREtu
′(ct+1) (90)

u′(ct) = βEtZtu
′(ct+1) (91)

The expected payoff to consumption versus saving must be equal at the margin, for both
assets.

Comment: equation (90) is familiar to us from Hall (1978). Recall that we learned
from Hall that we do not need an explicit solution for consumption to test the theory,
since we can test the strong implications of the FOCs. (See Hansen.)

Now recall that
Exy = ExEy + cov(x, y) (92)

and reconsider (89).

Et[Ztu
′(ct+1)]−REtu

′(ct+1) = 0 (93)

EtZtEtu
′(ct+1) + cov[Zt, u

′(ct+1)] = REtu
′(ct+1) (94)

EtZt = R− cov[Zt, u
′(ct+1)]

Etu′(ct+1)
(95)

Equation (95) is know as the consumption CAPM, and it is has often been tested with
aggregate data.
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Key message: assuming u′′ < 0, we see that a lower expected payoff from the risky
asset is acceptable if it tends to have a relatively high payoff when ct is low. That is, it
must serve as a consumption hedge.

Note: (B&F p.508) although the consumption CAPM should hold for each optimizing
individual, strong assumptions are required for the use of aggregate data. Typically invoke
a representative infinitely lived agent facing a fixed set of assets with a stationary (at least
after differencing?) distribution of returns.

HW: Consider the problem with n risky assets:

max
ωi,c

E0

T+1∑
t=0

βtu(ct) s.t. kt+1 = (kt − ct)[R(1−
n∑
i=0

ωi,t) +
n∑
i=0

Zi,tωi,t] (96)

Show that the consumption CAPM holds for each asset.
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