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Simulations as Experiments

“A simulation study is an experiment that needs to be designed.”
—[kelton-1999-dse]
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Purposes of Simulations

Find a useful simple model of a complex process.

understanding: why results emerge; which factors are important; how
specific factors influence the results; hypothesis testing

prediction: anticipate real-world responses to controllable factors
control/optimization:

search for “optimal” configuration of controllable factors
search for “robust” configurations of controllable factors

In this course, we emphasize the role of simulation modeling in producing new
understanding.
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Experimental Design in CSS

Need for planning: avoid time-consuming inefficiencies by adequate design

stopping criteria (terminal or steady state)

choice of metrics (moments, quantiles, ...)

role of randomness (seeds for PRNGs; use of common random numbers
(CRNs))

Design of Experiments (DoE):

rules for the effective collection of responses from experimental designs

originates from real world experimentation; we apply DoE techniques to
experiments with artificial computer worlds
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Experimental Design in CSS

Design of Experiments (DoE) is not used as widely or effectively in the practice
of simulation as it should be.
Possible explanations:

ignorance: DoE literature is unfamiliar to CSS researchers (different
specialization).

myopia: CSS researchers focus on building not analyzing their models.

empahsis: DoE literature primarily addresses a different audience
(real-world experimentation) and not the needs of simulation
research.
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Terminology

factor an input or parameter (quantitative or qualitative) that can take
on more than one value

decision factors (controllable)
noise factors (exogenous)

factor levels values of factors (usually numerically coded)

scenario a parameter configuration: specifies a factor level for each factor

replicate a scenario + a random number sequence

simulation maps a replicate into outputs (e.g., produces an observation or
an observation time series)

meta-model simplified representation of the scenario�output relationship
(e.g., a regression model)
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Experimental Design in CSS

responses

focal outcome variations in response to treatment variations

experimental design
1 an experimental framework
2 predictions of responses based on one or more hypotheses

(what are the questions?)
3 a detailed description of how the hypotheses will be

experimentally tested.
the treatments
the data collection
the approach to data analysis
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Experimental Design in CSS (cont.)

experimental framework a simulation model that permits systematic variation
in one or more treatment factors.

hypothesis a testable statement about the relationship between treatment
factors and responses (simulation results)

treatment a configuration of treatment factors

treatment factor a model parameter whose values can be manipulated by the
experimenter.

experiment multiple simulation runs with specified variation in treatment
factors
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Hypothesis Testing

1 predict the effects of changes in the treatment factors
2 run the simulation to confirm or disconfirm those predictions.

requires a specification of the:

treatment factor variation in the experiment,

simulation results that will be used to test the hypothesis,

criteria determining whether or not these results reject the hypothesis.
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Basic Components of Experimental Design

decide what responses to examine (i.e., what will count as results)

choose one or more treatment factors (i.e., model parameters to vary
systematically)

specify what values of the treatment factor you will consider

specify the fixed values of all other model parameters.

specify your hypotheses about the effect of your treatment factor(s) on
your responses

specify the number of replicates for each scenario

specify the random number generator and seed(s) for each run

specify the stopping criterion for the simulation (e.g., the number of
iterations for each replicate)
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Basic Components of Results Reporting

For each value of the treatment parameter, make a table showing the following:

the treatment value,

the random seed,

and the final values of your focus variables at iteration (i.e., the values
when the simulation stops)

For each value of the treatment parameter, report descriptive statistics for your
focus variables. (At the very least, report the mean, standard deviation, and
histogram.)
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Design Matrix

design matrix: specifies all considered combinations of factor levels.

design point: a row of the design matrix; a scenario

E.g., if we have just two factors (A and B) with levels A1, A2, B1, B2, B3 we
end up with six scenarios.

A B

A1 B1

A1 B2

A1 B3

A2 B1

A2 B2

A2 B3
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Problem of Dimensionality

Rule: if k is a big number, then 2k is a very big number.
If we have k factors each with just 2 possible levels, that gives us 2k possible
combinations.

full-factorial experiment considers all 2k scenarios

fractional-factorial experiment: restrict the scenarios considered by imposing
constraints (e.g., C=A*B) http://www.itl.nist.gov/
div898/handbook/pri/section3/pri334.htm
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Response Surface
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Source: [kelton-1999-dse]
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Response Surface: Contours
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Estimated Response Surface
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Estimated Response Surface: Contours
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Estimated Response Surface
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Source: [kelton-1999-dse]
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Estimated Response Surface: Contours
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Source: [kelton-1999-dse]

Alan G. Isaac (American University) ACE Experimental Design: An Introduction 2015-07-03 19 / 42



Response of Response

How sensitive is the response to the factors?

Direct approach (finite differences):

make a run with the factor of interest set to a value
perturb the factor value and make another run
compute slope (difference quotient)

Indirect approach:

fit a meta-model
consider the partial derivatives

Single-run methods:

perturbation analysis—move the factor during the run, track
new trajectory as well as trajectory if the perturbation had
not been made
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Meta-Model

response = f(factors)
E.g., summarize with a regression.
Comment: we may have many different responses in a simulation, with a
different meta-model for each.
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Optimum Response

Indirect:

fit a meta-model
optimize it using calculus

Staged

fit a meta-model of low dimensionality
optimize it using calculus
optimum determines a search region for further simulations

Black box

simulation is a black box function
optimization run by any external tool (e.g., NetLogo’s
Mathematica link)
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Optimization using External Services
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Example: Schelling Segregation Model

The simulation model is specified by our code but should be given a
supporting description.
Model parameters include:

the size of the world (default: 8 by 8),

the number of agent types (default: 2)

the number of agents of each type (or, the total number of agents and
their ratio)

the “happiness cutoff” parameter

the relative size of the different agent classes;

the initial location of the agents.
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Example: Schelling Segregation Model

We can pick any parameter as a treatment factor.

Illustrative hypothesis: increases in the happiness cutoff parameter increase
the likelihood of a segregated final outcome.

Turning the hypothesis into a prediction: given 25 agents each of two agent
types and an initial random distribution of agents in the world, a
rise in the happiness cutoff increases the final (T=1000)
segregation measure.
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Seeding the PRNG

Note that this experimental design is probabilistic.
Therefore, for each variation in the model’s treatment factors, you must run
multiple simulations.
Typically, each run will be based on a different programmer-specified setting of
a random seed for the pseudo-random number generator (PRNG) used in the
simulation.
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Seeding the PRNG

Specification of the PRNG and seed renders the results deterministic (i.e.,
capable of exact replication).
Therefore, you must record as data the random seed used for each run (along
with the values of your treatment-factors) and all user-specified or default
settings for maintained parameter values and simulation control options.
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Recording the Data

For each run, record the degree of segregation displayed by the resulting
agent location pattern.

Report “descriptive statistics” that summarize these experimental
segregation findings.

Based on these descriptive statistics, draw conclusions regarding whether
or not your hypothesis appears to be supported by your observations.

These descriptive statistics would typically include (at a minimum) the sample
mean value, the sample standard deviation, and possibly also a histogram, for
the degree of segregation observed across runs.
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Descriptive Statistics (Very Basic Review)

Suppose you have conducted N runs of an experiment using N different seed
values for your pseudo-random number generator.
Suppose you have recorded N observations X1, X2,..., XN regarding some
quantifiable experimental outcome of interest X (e.g., the degree of
segregation).
The sample mean is the arithmetic average value of your N observations.

X̄ =
1
N

N

∑
i=1

Xi
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Descriptive Statistics (basic review continued)

Variance (σ2): the average squared deviation from the mean.

standard deviation: the square root of the variance.

often good measures of how dispersed the data are: a low variance
means that the data are more tightly clustered around the mean.

we usually use the standard deviation, because it has the same units as
the mean, which makes it easier to interpret.
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Descriptive Statistics (review continued)

For example, given observations X1,...,XN:

σ
2
X =

1
N

N

∑
i=1

(Xi − X̄)2

=
1
N

N

∑
i=1

(X 2
i −2Xi X̄ + X̄ 2)

=
1
N

N

∑
i=1

X 2
i − X̄ 2

σX =
√

σ2
X

Note: there are two common measures of variance (and thus of standard
deviation). A common alternative to the measure we adopt divides by (N-1)
instead of N. See
http://en.wikipedia.org/wiki/Standard_deviation for
details.
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Graphics

histogram

a standard graphic for simulation outcomes.

puts observations into bins based on their values

plots the number (or relative frequency) of values in each bin.
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Histogram

You might construct a frequency histogram for N observations as follows.
1 Bin your observations into bins B1 ... BN
2 For each possible bin, Bi, let #Bi denote the number of observations

falling in that bin.
3 Produce the bin relative frequencies bi = #Bi/N
4 plot the points (i, bi) This is your relative frequency histogram.
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Histogram Example

Suppose N = 1000 and you have two bins, for outcomes above (bin 1) or below
(bin 2) some segregation measure cutoff.
Suppose 300 observation fall into bin 1.
Then your frequency histogram plots two points: (1,.30) and (2,.70).
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Histogram

A histogram can indicate a failure of the data to have a central tendency.
(Pareto Distribution)
This is important for our interpretation of our descriptive statistics. E.g., sample
mean and sample standard deviation are most useful observations cluster
around the mean value.
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Schelling Model: Response Surface
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Schelling Model: Response Estimate

After looking at the response surface, seek a meta-model:

y = beta0 + beta1x1 + β2x2 + beta3x2
1 + β4x2

2

y pct_same_type

x1 population_density

x2 pct_same_type_desired

Alan G. Isaac (American University) ACE Experimental Design: An Introduction 2015-07-03 37 / 42



Schelling Model: Responses (blue) v. Fitted Values (yellow)
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Schelling Model: Response Estimate

import scikits.statsmodels as sm
y = pct_same_type
x1 = population_density
x2 = pct_same_type_desired
dummy = x2 >= 80
X = np.column_stack((x1, x2, x1**2, x2**2, dummy))
X = sm.add_constant(X)
results = sm.OLS(pct_same_type, X).fit()
print results.summary()
yf = results.fittedvalues
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Schelling Model: Response Estimate

==========================================
| coefficient prob.|
------------------------------------------
| x1 -73.2431 2.138E-08|
| x2 1.1802 1.080E-13|
| x3 40.3979 0.001051|
| x4 -0.0074 3.685E-05|
| x5 -28.4147 1.077E-12|
| const 73.8049 4.204E-45|
==========================================
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Schelling Model: Responses (blue) v. Fitted Values (yellow)
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