
Python Iterators

Alan G. Isaac

September 25, 2013

Part I

Iterators and Generators
0.1 Preliminaries

In [1]:

%matplotlib inline
import random
import numpy as np
import matplotlib.pyplot as plt

0.2 Iterators

Roughly speaking, an iterator is an object with a next method.

But an iterator should also produce an iterator when it iter is

applied to it – a requirement we meet by defining an appropriate

__iter__ method. Our __iter__ method will

simply return self. To illustrate, let us define a simple

random walk iterator.

In [2]:

class RandomWalk(object):
def __init__(self):

self.val = 0
def __iter__(self):

return self
def next(self): #Python 2

self.val += random.normalvariate(0,1)
return self.val

In [4]:

rw01 = RandomWalk()
random.seed(314)
data01 = list((next(rw01) for _ in range(101)))

fig, ax = plt.subplots(1,1)
ax.plot(data01)
plt.show()



0.3 Generators

Another approach is to use a generator factory. In Python these are

called generator functions: functions that return generators. The

function definition looks normal, except for the presence of the

yield keyword.

In [6]:

def g_my123():
yield 1
yield 2
yield 3

test = g_my123()
list(test)

Out [6]:

[1, 2, 3]

We can call next on a generator to produce its next value. If

we do this too many times, we raise a StopIteration error.

In [5]:

next(test)

--------------------------------------------------------------
-------------

StopIteration Traceback (most recent
call last)

<ipython-input-5-911ea584f8be> in <module>()
----> 1 next(test)



StopIteration:

Generating a Random Walk

In [5]:

def randomwalk():
val = 0
while True:

val += random.normalvariate(0,1)
yield val

In [8]:

rw02 = randomwalk()
random.seed(314)
data02 = list(next(rw02) for _ in range(101))

fig, ax = plt.subplots(1,1)
ax.plot(data02)
plt.show()

Breaking It Into Pieces

We can break this down into parts. Let us first produce a way to

generate a predictable sequence of shocks.

In [9]:

def g_shock(maxct=10**3, seed=None):
prng = random.Random(seed)
ct = 0
while (ct < maxct):

ct += 1
yield prng.normalvariate(0,1)

list(g_shock(101,314)) == list(g_shock(101,314))



Out [9]:

True

Next we produce cumulative sums for any iterable.

In [10]:

def g_cumsum(iterable):
csum = 0
for val in iterable:

csum += val
yield csum

data01 == list(g_cumsum(g_shock(101, 314)))

Out [10]:

True

For example, we might want to work with the shocks someone else

produced, when we try to replicate their work.


	I Iterators and Generators 
	Preliminaries
	Iterators
	Generators
	Generating a Random Walk
	Breaking It Into Pieces




