Jones Ch. 5: Solow Model

Alan G. Isaac

American University
All theory depends on assumptions which are not quite true. That is what makes it theory. The art of successful theorizing is to make the inevitable simplifying assumptions in such a way that the final results are not very sensitive.
– Robert Solow (1956 QJE)
1960

- KR: GDP per capita = $1500, population ≈ 25M, labor force participation rate ≈ 50%, college attendance in early twenties ≈ 5%
- PH: GDP per capita = $2000, population ≈ 25M, labor force participation rate ≈ 50%, college attendance in early twenties ≈ 13%

2000

- KR: GDP per capita = $16,000
- PH: GDP per capita = $3400

Why did South Korea (KR) grow so much faster than the Philippines?
Simplesst Solow Model

Model is dynamic: K is changed by I according to the capital accumulation equation:

\[K_{t+1} = K_t + I_t - \bar{d}K_t \] \hspace{1cm} (1)

\[K_{t+1} - K_t = I_t - \bar{d}K_t \] \hspace{1cm} (2)

\[\Delta K_t = I_t - \bar{d}K_t \] \hspace{1cm} (3)

Investment is determined by saving, which is a constant fraction of output

\[I_t = \bar{s}Y_t \] \hspace{1cm} (4)

The steady-state capital stock becomes *endogenous*.
Simplifications

• Simplified economy: leave out G and $EX - IM$:

$$Y_t = C_t + I_t$$ \hspace{1cm} (5)

• no TFP growth ($\hat{A} = 0$)

• no population growth.
Steady state of this *simplest* Solow model: gross investment equals depreciation. (I.e., no net investment.)

\[I_{ss} = \bar{d}K_{ss} \]
\[\bar{s}Y_{ss} = \bar{d}K_{ss} \]
\[K_{ss}/Y_{ss} = \bar{s}/\bar{d} \]

The steady-state capital-output ratio is determined by the model parameters.
Solve for K_{ss}

In the simplest Solow model:

\[
\frac{K_{ss}}{Y_{ss}} = \bar{s}/\bar{d}
\]

\[
\frac{K_{ss}}{\bar{A}K_{ss}^{1/3}L^{2/3}} = \frac{\bar{s}}{\bar{d}}
\]

\[
K_{ss}^{2/3} = \bar{A}\bar{L}^{2/3}\frac{\bar{s}}{\bar{d}}
\]

\[
\left(K_{ss}^{2/3} \right)^{3/2} = \left(\frac{\bar{s}\bar{A}\bar{L}^{2/3}}{\bar{d}} \right)^{3/2}
\]

\[
K_{ss} = \left(\frac{\bar{s}\bar{A}}{\bar{d}} \right)^{3/2} \bar{L}
\] (6)
This implies the steady-state capital-labor ratio:

\[k_{ss} = \frac{K_{ss}}{L} = \left(\frac{sA}{d} \right)^{3/2} \]

(7)

Since \(y = Ak^{1/3} \), this implies a steady-state per capita income

\[y_{ss} = \frac{Y_{ss}}{L} = \bar{A}^{3/2} \left(\frac{s}{d} \right)^{1/2} \]

(8)

The corresponding level of output is

\[Y_{ss} = \bar{A}^{3/2} \left(\frac{s}{d} \right)^{1/2} \bar{L} \]

(9)
Application from Jones (2008, p.108, equation 5.12): let’s compare the implications for a rich country and a poor country for *relative* standard of living.

- get data on per capita real GDP and also on investment rates (data from 2000)
- assume depreciation rates are the same in both countries.
- use averages for the richest five countries and poorest five countries.
- use investment rates as a proxy for saving rates. (This is appropriate for the Solow model.)
Income differs by a factor of about 45. Investment rates differ by a factor of a bit more than 6. Deduce the relative contribution of the “technological” parameter to \textit{steady-state} differences in per capita income.

\[
\frac{y_{rss}}{y_{pss}} = \left(\frac{\bar{A}_r}{\bar{A}_p} \right)^{3/2} \left(\frac{\bar{s}_r}{\bar{s}_p} \right)^{1/2}
\]

\[
45 = \left(\frac{\bar{A}_r}{\bar{A}_p} \right)^{3/2} (6.25)^{1/2}
\]

\[
\left(\frac{\bar{A}_r}{\bar{A}_p} \right)^{3/2} = 45/(6.25)^{1/2} = 45/2.5 = 18.0
\]

Conclusion: even if we switch our emphasis to steady-state differences in per capita income, most of the difference is accounted for by the “technological” parameter.
The “technological parameter” \((A)\) is a residual that captures many things, including:

- technology
- natural resources
- human capital
- institutions
Solow Growth Model

Solow Diagram (simplified: \(\hat{L} = 0 \) and \(\hat{A} = 0 \))

FIGURE 5.1 The Solow Diagram
Transition Dynamics in the Simplest Solow Model

($\hat{L} = 0$ and $\hat{A} = 0$)

FIGURE 5.2 The Solow Diagram with Output
One-Time Destruction of Capital Stock

FIGURE 5.11 The Solow Diagram
One-Time Destruction of Capital Stock (Dynamics)

FIGURE 5.12 Output over Time, 2000–2100
Prediction: output rises faster when we are farther from the steady state.
Real GDP p.c.: Level vs. Growth Rate (many countries)

FIGURE 5.9 Growth Rates around the World, 1960–2000
Real GDP p.c.: Level vs. Growth Rate (OECD)

FIGURE 5.8 Growth Rates in the OECD, 1960–2000
So the prediction looks a bit better if we focus on developed countries.
Increase in Saving (Simplest Solow Model)

FIGURE 5.4 An Increase in the Investment Rate
Prediction: an increase in s will lower Y/K (i.e., raise K/Y).
K/Y and s (positive correlation)
Dynamic Effects of an Increase in s (Solow model)

FIGURE 5.5 The Behavior of Output Following an Increase in s
FIGURE 5.6 A Rise in the Depreciation Rate
D_y - ve)
Dynamic Effects of an Increase in \bar{d} (Solow model)

Figure 5.7 The Behavior of Output Following an Increase in \bar{d}
FIGURE 5.10 Investment in South Korea and the Philippines, 1950–2000
Next: macro-romer.pdf
Solow Growth Model