
Applied Mathematical Economics
with Mathematica

Author: Alan G. Isaac

Institution: American University

Copyright (c) 2015 by Alan G. Isaac

Initialization

Front Matter

Preface
This booklet is intended to support the use of Mathematica in courses on Mathematical Economics. No

prior programming experience is assumed; no prior Mathematica experience is assumed. Built-in

Mathematica commands are introduced more-or-less on an as-needed basis, rather than systemati-

cally. Some commands are treated in detail, but I make no effort to reproduce the excellent and exten-

sive Mathematica documentation. Instead, I introduce readers to the Mathematica help system, and I

occasionally point to online resources.

The mathematics presented herein is not self-contained. This is not a textbook in Mathematical Eco-

nomics. Rather, I use Mathematica to provide illustrations of some mathematical tools typically covered

in a first course in Mathematical Economics. Core goals include the following:

◼ introduce the basic use of Mathematica notebooks for computation, plotting, and symbolic algebra

◼ encourage readers to improve their mathematical intuition with concrete applications and graphical
explorations

◼ familarize readers with the computational application of basic mathematical tools to economic
problems

This booklet approaches these goals by providing economics-relevant applications of the following:

◼ linear algebra

◼ univariate and multivariate calculus

◼ linear and nonlinear comparative statics

◼ univariate and mulitvariate optimization

Use of Mathematica provides substantial benefits to teachers and students in introductory Mathematical

Economics. Courses introducing mathematical tools to economists often cover a wide range of topics

at a speed that can intimidate students. Concrete applications of the mathematical concepts help

students learn, but these often require tedious calculations that consume classroom time as well as the

mental energy of students. The use of Mathematica delegates some of this tedium to the software and

2 mathematica_intro.nb

greatly increases the speed with which examples can be developed and problems solved. This allows

greater emphasis on core mathematical practices.

This booklet was written using Mathematica version 10 for Windows. Users on other operating systems

should have no difficulties as long as they have a recent version of Mathematica. However, I use a few

commands that did not exist in earlier versions, and sometimes of the algorithms associated with a

command improve in later versions. Therefore readers are encouraged to work the examples with

version 10 or later.

Some sections or passages are marked as “advanced”. This material can be skipped on a first reading

by those new to Mathematica, but those with some Mathematica exposure should find them accessible

even on a first reading.

Mathematica and the Notebook: A Brief
Introduction

This chapter provides a basic introduction to the use of Mathematica notebooks to enter text and to

perform basic numerical and symbolic computations.

Notebooks and the Front End
Mathematica comes with an interactive graphical user interface (GUI) called the front end. We use the

front end to perform interactive computations and to keep a record of these computations as notebooks.

To create a new notebook, pick from the front end menus File > New > Notebook.

Evaluating Numerical Expressions

Cells

A Mathematica notebook is a collection of cells. After starting the Mathematica front end and creating a

new notebook, just start typing to create a notebook cell. You will see that the cell is delimited by a

bracket on its right side. Press the down arrow to leave this cell. A horizontal line will appear, indicating

an insertion point for a new cell. Type some more and a new cell is created.

Cell Styles

Click on a cell’s right edge to make it active, and then use the Format > Style menu to give it a style.

The default cell style is Input, which is for Mathematica expressions that you wish to evaluate, but you

can change the style at any time by using the Format menu. We will most often be creating one of the

following Cell types: Input, DisplayFormula, and Text. We will also use Title, Section, and Subsection.

There are also keyboard shortcuts for the Format menu. (See https://reference.wolfram.com/language/tu-

torial/KeyboardShortcutListing.html#1484044289).

Text cells can contain ordinary text. Give a cell a Text style when you want to provide discussion or

mathematica_intro.nb 3

descriptions of your calculations. The Mathematica front end will do some basic formatting of this text, in

a manner similar to how a word processor handles text.

In contrast, use the default Input style if your cell contains Mathematica expressions that you want to

evaluate.

If you want to create a new cell with the same style your are currently using, press Alt+Enter.

Evaluating Input Cells

After entering any Mathematica expression into an Input cell, press `Shift+Enter` to evaluate it. The

result is placed in its own cell, which has the Output style. For example, consider an arbitrary arithmetic

expression.

105  15 * 7

1

This example shows that you can easily use Mathematica as a calculator. Note the familiar use of

parentheses to determine the order of evaluation in the Input expression. (Q: What is the result if you

remove them?)

We often want to explain an expression. We can do this with comments, which open with an opening

parenthesis and asterisk and close with an asterisk and closing parenthesis, `(* like this *)`.

355  113. (* crude approximation to π *)

3.14159

You may place more than one expression in a single Input cell. If you want to compute the value of an

expression but not display it, end the expression with a semicolon. If you want to refer to the last com-

puted value, use a percent sign. As an example of both, let us do a computation on multiple lines but

only display the final result.

2 * 3;

% + 5

11

Mathematica allows you to add styles to your results. However, keep in mind that a formatted object

does not behave the same as the underlying object. Once a number is styled, for example, you will not

be able simply to do arithmetic with the result.

Style[2 * 3, Red]

% + 5 (* addition will not be performed *)

6

5 + 6

Numbers

Mathematica distinguishes between exact numbers (roughly, integers and rationals) and approximate

numbers (roughly, floating point numbers). Computations done with exact numbers return exact results.

4 mathematica_intro.nb

5 * 3  7

15

7

We can use the `N` command to turn an exact number into an approximate number.

N[%]

2.14286

Mathematica names a few special numbers. (Like Mathematica commands, these names all start with a

capital letter.)

{Pi, E, I, Infinity, -Infinity}

{π, ⅇ, ⅈ, ∞, -∞}

Use `N` to turn these into approximate numbers (when possible):

N[%]

{3.14159, 2.71828, 0. + 1. ⅈ, ∞, -∞}

Numerical Comparison with Relational Operators

Mathematica has the usual collection of comparison operators: < , ≤ , ⩵ , ≠ , ≥ , >. The value of a

numerical comparison is “boolean” (i.e., either `True` or `False`). E.g.,

1 < 1

False

Expressions are evaluated before they are compared, and numbers of different types compare in a

natural fashion.

1 ⩵ 1.0

1 ⩵ 3  3

True

True

We can use the `And` and `Or` commands to determine whether all or any comparisions are `True`.

And[1 < 1, 1 ≤ 1, 1 ⩵ 1, 1 ≠ 1, 1 ≥ 1, 1 > 1]

Or[1 < 1, 1 ≤ 1, 1 ⩵ 1, 1 ≠ 1, 1 ≥ 1, 1 > 1]

False

True

Each comparison operator is shorthand for a Mathematica command. For example, the infixed double

equal sign `==` is shorthand for `Equal`.

Relational operators can be chained:

mathematica_intro.nb 5

1 ⩵ 1 + 0 ⩵ 0 + 1

3 > 2 > 1

True

True

Advanced: Mathematica numerical equality are “clever”, relying on numerical approximation to test

inequality. Thus for example the following comparision evaluates to `True` in Mathematica, whereas

(due to rounding error) it would not in most languages.

.3 ⩵ .1 + .2

True

Advanced: If you really want to test for sameness (after evaluation) and not just numerical equality, use

three equals signs: ===. For Mathematica, exact numbers are not the same thing as approximate

numbers.

1 === 3  3

.3 === .1 + .2

1 === 1.0

True

True

False

Stopping an Evaluation

Do not be afraid to evaluate expressions in Mathematica. If you make a mistake that results in an invalid

expression, Mathematica will tell you about your mistake. If you evaluate an expression that is taking

too much time, you can pick Evaluation > Abort Evaluation from the Mathematic menus. (You can

alternatively enter Alt+. to abort an evaluation, i.e., bring it to a full stop.) If you want to evaluate an

expression that you fear may take a very long time, you can limit the amount of time Mathematica will

work on it with the TimeConstrained command.

It is rare but possible to enter an expression that causes Mathematica to lock up, so be sure to save

often. It is possible to ask Mathematica to autosave your work, but since half-written code may be

useless or worse, you may find it more useful to save often by hand (ctrl+s).

Full Form

Each Mathematica expression has an equivalent “full form”, which is what the front end actually sends

to the kernel for evaluation. For example, our expression `105/(15*7)` is really a convenient shorthand

for Times[105,Power[Times[15,7],-1]]. We will seldom have reason to consider this full form, but at

times it is useful for debugging. You can use the `Hold` and `FullForm` commands to discover it. (The

`Hold` command prevents evaluation of the expression, and `FullForm` returns its full form.)

6 mathematica_intro.nb

HoldFormFullForm105  15 * 7

Times[105, Power[Times[15, 7], -1]]

HoldForm[FullForm[{1 < 1, 1 ≤ 1, 1 ⩵ 1, 1 ≥ 1, 1 > 1}]]

List[Less[1, 1], LessEqual[1, 1], Equal[1, 1], GreaterEqual[1, 1], Greater[1, 1]]

Symbols

Rules for the Creation of Symbols

We will often want to give names to Mathematica objects, using user-defined symbols. You can use

almost any combination of letters to define a symbol. By convention, Mathematica’s system-defined

symbols capitalize the first letter, so in order to avoid name clashes you should not capitalize the first

letter of your new symbols. A symbol cannot start with a digit, but you can use numeric characters

anywhere else in your symbols.

Sometimes we would like to include a non-alphanumeric character in order to visually break a symbol

into parts. The standard choice in many languages is the underscore, but that has a special meaning in

Mathematica. (It is used to produce patterns.) The only choice from a standard American keyboard is

the back tick. (This actually creates a symbol with a “context”, as we will discuss shortly.) Be sure not to

end your symbol with a dollar sign nor with a dollar sign followed by digits, as Mathematica uses these

forms for special purposes. (For details, see the documentation entitled How Modules Work.) Also note

that superscripts and subscripts do not become part of a symbol name.

Manipulating Symbols

You can manipulate symbols without associating them with any values.

Clear[a, b, c, x]

Solvea * x2 + b * x + c ⩵ 0, x

x →
-b - b2 - 4 a c

2 a
, x →

-b + b2 - 4 a c

2 a


Note how we first used `Clear` to clear any definitions that might have been assigned to these symbols.

Setting and Unsetting the Values of Variables

When we introduce symbols as variable names, and we often wish to assign values to them. Use a

single equal sign (the assignment operator) to define a symbol to be equivalent to the value of a defin-

ing expression.

Clear[a, b, c]

a = b + c

b + c

The equals sign is actually shorthand for the `Set` command, so the following is equivalent. (But we

usually use the equals sign.)

mathematica_intro.nb 7

Clear[a, b, c]

Set[a, b + c]

b + c

Notice that an assignment expression has a value, produced by the evaluation of the right hand side.

Assignment returns this value, and it is displayed as output. You can suppress that output by putting a

semi-colon at the end of the line.

a = b + c;

After such an assignment, the defined symbol will simply be replaced in subsequent expressions by its

definition. (We have associated a “rewrite rule” with the symbol `a`, which will be applied whenever

Mathematica encounters `a`.)

a * a

(b + c)2

An assignment persists until you make a new assignment or `Unset` the symbol. In the latter case, the

symbol still exists but no longer refers to its previous definition. Mathematica provides the shorthand

`=.` for `Unset`.

Clear[a, b, c]

a = b + c; (* Set the value of `a` *)

a * a

a =. (* Unset `a`, which now has no value *)

a * a

(b + c)2

a2

Advanced: Once you create a symbol, it persists. When we `Unset` a symbol, we do not remove it from

Mathematica’s list of recognized symbols. We can see this list by using the `Names` command. If this

is for some reason unacceptable, we can `Remove` the symbol.

a00 = 5;

Unset[a00] (* `a00` is still in the list of names: *)

MemberQ[Names["Global`*"], "a00"]

Remove[a00](* `a00` is no longer in the list of names: *)

MemberQ[Names["Global`*"], "a00"]

True

False

Multiple Assignment and Clear

You can make many assignments at once by putting comma-separated variable names and assigned

values in braces. Since the right hand side of an assignment is evaluated before the assignment takes

8 mathematica_intro.nb

place, you can use multiple assignment to swap variable values.

{a01, a02} = {1, 2}; (* set both values *)

{a01, a02} (* show both values *)

{a01, a02} = {a02, a01}; (* swap values *)

{a01, a02}

{1, 2}

{2, 1}

You can `Unset` many symbols by providing them as arguments to `Clear`.

Clear[a01, a02]

{a01, a02}

{a01, a02}

Advanced: Use ClearAll instead of Clear if you want to clear Attributes and Options associated with a

symbol. You can also Remove a symbol, but this has subtle repercussions. (It will affect all your previ-

ous definitions using that symbol.)

Advanced: You can use the OwnValues command to examine the assignment to a variable. We see

that assignment has created a rule associated with that variable. For example, if we have made an

assignment to `a` but not to `b` we find a rule in `OwnValues[a]` but none in `OwnValues[b]`.

Clear[a, b, c]

a = b + c

OwnValues[a]

OwnValues[b]

b + c

{HoldPattern[a] ⧴ b + c}

{}

Delayed Assignment

We have seen that assignment (`Set`) immediately evaluates the right hand side and assigns this value

to the left hand side. The evaluation of the right-hand side is done once.

Clear[a, b];

a = 0; b = a; a = 1; b

0

Sometimes we want different behavior: the right hand side is not evaluated until the left hand side

symbol is used. Mathematica allows us to achieve this with the `SetDelayed` command, or the equiva-

lent := operator. The evaluation of the right hand side is done anew each time the left-hand side symbol

appears.

mathematica_intro.nb 9

a = 0; b := a; a = 1; b

1

Here is another way to see the different between assignment and delayed assignment.

x1 = RandomInteger[100]

{x1, x1, x1, x1} (* the same each time *)

x2 := RandomInteger[100]

{x2, x2, x2, x2} (* can differ each time *)

44

{44, 44, 44, 44}

{9, 40, 90, 80}

Advanced: Notice the difference in the `OwnValues` of `b` in the following cases. Related to this, in

contrast to `Set`, the `SetDelayed` command returns a `Null` value.

ClearAll[a, b1, b2, b3]

{a = 2, b1 = a};

OwnValues[b1]

{a := 2, b2 = a};

OwnValues[b2]

{a := 2, b3 := a};

{OwnValues[b1], OwnValues[b2], OwnValues[b3]}

{b1, b2, b3}

a = 3

{b1, b2, b3}

{HoldPattern[b1] ⧴ 2}

{HoldPattern[b2] ⧴ 2}

{{HoldPattern[b1] ⧴ 2}, {HoldPattern[b2] ⧴ 2}, {HoldPattern[b3] ⧴ a}}

{2, 2, 2}

3

{2, 2, 3}

Equality vs. Assignment

Note that Mathematica has several different uses of the equals sign.

10 mathematica_intro.nb

x1 = 2 (* assignment *)

x2 := Random[] (* delayed assignment *)

1 ⩵ 1.0 (* equality testing *)

1 === 1.0 (* identity testing *)

2

True

False

Variable Scope

By default Mathematica symbols have global scope: they are available anywhere in your notebook. For

users accustomed to traditional programming languages, this has some surprising implications, which

trace to our ability to manipulate undefined symbols in Mathematica expressions. For example, without

defining x or y we can write utility as

Clear[x, y]

U = x0.5 y0.5

x0.5 y0.5

Mathematica uses this expression to define U but x and y remain undefined. Moreover, we can then

subsequenctly assign values to these varaibles, and it affects the values of U.

x = 20; y = 30;

U

24.4949

If we change the values of x or y, it changes the value of U.

x = 50;

U

38.7298

If we clear the values of x and y, then we return to a definition of U in terms of undefined variables.

Clear[x, y]

U

x0.5 y0.5

The default global scope is often convenient, but it does mean that if you re-evaluate an expression

earlier in a notebook after you change (later in the notebook) any variable in the expression, this will

affect the evaluation of that expression. That is, the order of occurence in a notebook need not signal

the order in which expressions have been evaluated. (You can pick Evaluate Notebook from the Evalua-

tion menu if you want to evaluate all the evaluatable cells in order.) For this and other reasons, you may

want to ensure that some variables are local to an expression. You can accomplish this with the Mod-

ule command. (For more details, see the Mathematica documentation entitled How Modules Work.)

mathematica_intro.nb 11

t = 5;

Module[{t = 0}, t += 1; Print[t]]

Print[t]

1

5

Comparison

We can test equality between symbolic expressions:

Clear[a, b]

a = b; (* assignment *)

a ⩵ b (* equality test *)

True

Symbolic equations may not automatically be simplified. In this case the original equation is returned.

Sin[θ]^2 + Cos[θ]^2 ⩵ 1

Cos[θ]2 + Sin[θ]2 ⩵ 1

We may be able to force simplification with the `Simplify` command (or the more costly `FullSimplify` if

necessary).

Simplify[%]

True

If we restrict their values, we may even be able to simplify to a boolean value size comparisons

between symbols that have not been assigned numerical values. Note how the relational operators get

reused to impose relations, not only to test for them.

Simplify[x < y, x < 3 && y > 4]

True

Warning: Expressions that appear identical may not be identical, if they have side effects. For example,

the `Increment` command increases the value of a symbol by 1 (and returns the old value). (There is a

puzzle as to how a command can directly change the value of its argument, which we will take up later

when discussing the `HoldAll` attribute.) We can append `++` to a symbol as a shorthand for

`Increment`.

a = 1;

a++ ⩵ a++

a

False

3

Help

12 mathematica_intro.nb

Mathematica’s basic help facility is its `Information` command, which provides help for any symbol. The

help begins with a basic “usage message” and the provides some details about the symbol, including

any options.

a = b + c;

Information[a]

Info-aeb39697-4ef6-44ec-96c5-bedbc86d17f4

Global`a

Info-aeb39697-4ef6-44ec-96c5-bedbc86d17f4

a = b + c

Here we learn that `a` is a global symbol that has been set equal `b+c`.

We often want information about Mathematica commands. To make this much shorter to type this as an

“input escape”, prepending two question marks to the symbol.

?? Information
Info-3cd93d23-7d8e-44c4-9bc3-f96744387842

Information[symbol] prints information about a symbol. 

Info-3cd93d23-7d8e-44c4-9bc3-f96744387842

Attributes[Information] = {HoldAll, Protected, ReadProtected}

Options[Information] = {LongForm → True}

We often only want the usage message, which is available as an option by specifying LongForm-

>False. To specify that we do not want the long-form information, we can alternatively use a single

question mark instead of two.

? Information
Info-40bca079-4b37-4ce1-9f77-cc24162448b4

Information[symbol] prints information about a symbol. 

Additional Observations

Warning: As you start working in your Notebooks, remember that symbol definitions are global. Computa-

tions are done by the Mathematica kernel. If you open multiple notebooks during a single Mathematica

session, the notebooks will share a single kernel by default. (You can change this.) This means that all

your open notebooks are sharing all your global definitions!

Aside: to completely remove all your global symbols, it is safest just to use the Quit[] command. This

quits the kernel and then starts a new Mathematica session.

Advanced: The front end and the kernel talk to each other via MathLink, a communications protocol.

Programmers can use MathLink to communicate with Mathematica from their programs or other applica-

tions.

Contexts

Every Mathematica symbol has a context, which is part of its full name. When you create a new symbol

mathematica_intro.nb 13

at a notebook prompt, it is ordinarily part of the Global` context. You can determine the context of a

symbol with the `Context` command.

Context[a]

Global`

IMPORTANT: by default, symbols in the global context are available to all your open notebooks! You

can set a Notebook’s Default Context via the Evaluation menu.

A context name always ends with a backtick, called a context mark. You can create a new context at

any time simply by including a new context name when defining a symbol.

Context[my`a]

Context[yr`a]

my`

yr`

a + my`a + yr`a

my`a + yr`a + b + c

For more information, see the Mathematica documentation entitled Contexts.

Entering Math

Typing Math in Text Cells

Often we wish to include inline math in a Text cell. We do this by creating an inline-math cell, usually by

pressing Ctrl+9. A lightly colored box appears, and you can begin typing your math. When you are done

typing your math, press ctrl-0 to exit. On a standard American keyboard, the numbers 9 and 0 are

associated with opening and closing parentheses, which provides a nice mnemonic for math entry.

Notice that Mathematica applies different formatting to the inline-math cell than it does to ordinary text.

Here is an example: y = f (x).

In order to type mathematics, you will also want to learn how to enter special symbols and formats. One

simple approach is to pick from the menus Palettes > Basic Math Assistant, which gives point and click

access to a useful collection of symbols and typesetting formats. For faster entry, you will want to learn

keyboard shortcuts. Mathematica allows use of the escape (esc) key to delimit keyboard shortcuts

(called aliases) to special symbols. You can also use full names for the symbols, surrounded by brack-

ets, and preceded by a backslash. So we can enter an α either as [esc]a[esc] or as ∖[Alpha], and we

can enter ∫ as either [esc]int[esc] or as ∖[Integral]. Finally, we often want to type superscripts or sub-

scripts: rather than rely on the Basic Math Assistant, it is good to learn the keyboard shortcuts: Ctrl+6

(or alternatively, Ctrl+^ on an American keyboard) and Ctrl+- (or equivalently, Ctrl+_ on an American

keyboard) bring up the superscript and subscript templates. Now you can type expressions such as

y = α1 x2 in your Text cells.

In the Basic Math Assistant, if you hover your mouse over a special format, Mathematica will display the

keyboard shortcut for that format.

14 mathematica_intro.nb

Some online resources:

http://reference.wolfram.com/mathematica/guide/GreekLetters.html

http://reference.wolfram.com/mathematica/guide/SpecialCharacters.html

http://reference.wolfram.com/mathematica/tutorial/KeyboardShortcutListing.html

HoldForm

When we want Mathematica to evaluate a mathematical expression, we type that expression into a cell

that has the default `Input` style. When that cell is active, we can evaluate the expression by pressing

`Shift+Enter`. The result of the evaulation will display in a new cell, which is given an `Output` style.

Here is an example from the Wolfram documentation.

HoldForm[Integrate[x^2 E^-x^2, x]] ⩵ Integrate[x^2 E^-x^2, x]

 x2 ⅇ-x2 ⅆx ⩵ -
1

2
ⅇ-x2 x +

1

4
π Erf[x]

Note the use of HoldForm, which prevents the evaluation of the expression on the left. As a result we

can display both the expression we want to evaluate and its evaluation. This is the kind of thing we

might want to include in our text. Mathematica distinguishes display math from inline math. Display

math is placed in a separate cell with style DisplayFormula or DisplayFormulaNumbered. This is where

you will usually type stand-alone equations and expressions involving two-dimensional structures, such

as matrices. So let us copy it into a new cell, which we give the DisplayFormula style.

x2 ⅇ-x2
ⅆx⩵ -

1

2
ⅇ-x2

x +
1

4
π Erf[x]

Matrices in a Display Formula

Usually you will want to type a matrix formula directly into a cell having the DisplayFormula style. Here

is one way. Begin by creating a DisplayFormula cell and entering your matrix equation.

{{a11, a12}, {a21, a22}} {{x1}, {x2}} ⩵ {{b1}, {b2}}

Next, press Ctrl+Shift+t to change it to traditional display:

a11 a12

a21 a22

x1

x2


b1

b2

Display formula are not automatically center-aligned. To change the alignment, pick from the menu

Format > Text Alignment > Align Center.

a11 a12

a21 a22

x1

x2


b1

b2

Advanced: Entering Math as LaTeX

If you are familiar with LATEX, you may at time find it more convenient to enter math expressions using

LATEX notation. Mathematica allows you to do this with ToExpression[“inputstring”,TeXForm], where any

backslashes in the input string must be doubled.

mathematica_intro.nb 15

ToExpression["\\sqrt{2.0}", TeXForm]

1.41421

Since LATEX notation is not always unambiguous, Mathematica can be very touchy about how you use

it. For example, ToExpression[“\\int_0^3 2*x dx”,TeXForm] will fail. But if we force a space, Mathematica

will recognize (and evaluate) the expression.

ToExpression["\\int_0^3 2*x \, dx", TeXForm]

9

If you want to see the LATEX that Mathematica associcates with an expression, use TeXForm.

TeXForm[Integrate[f[x], {x, 0, 3}]]

\int_0^3 f(x) \, dx

Drawing with Graphics Objects

Interactive Drawing

Mathematica allows for interactive drawing in your notebooks. From the Mathematica menus pick

Insert>Picture>NewGraphic, or just press Ctrl+1, to create a new empty graphic. Then press Ctrl+D to

bring up the Drawing Tools palette. At the top of the palette you can find a variety of objects to place in

your drawing. You can set the properties (e.g., color and line thickness) before drawing the object, or

you can left-click the object after drawing it and change its properties. (For more details, see the Mathe-

matica documentation entitled Graphics Interactivity & Drawing and the documentation entitled Drawing

Tools.)

However, for ease of modification and ready replication, it is a good habit to draw with code rather than

with the interactive tools.

16 mathematica_intro.nb

Example: Polygon, Point, Arrow, and Text

p1 = {0, 0}; p2 = {1, 0}; p3 = {0, 1};

g1 = Graphics[

{

{Gray, Polygon[{p1, p2, p3}]},

{PointSize[Large], Red, Point[p3]},

{PointSize[Large], Blue, Point[p2]},

{Thick, Red, Arrow[{p1, p2}]},

{Thick, Blue, Arrow[{p1, p3}]},

{White, Text[Style["Graphics Demo", 14], {0.3, 0.3}]}

},

ImageSize → Small]

Graphics Demo

Example: Rectangle, Circle, Axes

g2 = Graphics[{

{Red, Rectangle[{0, 0}, {2, 2}]},

{Yellow, Circle[{1, 1}, 1]},

{Green, Circle[{1, 1}, Sqrt[2]]},

Text[Style["text", 20], {1, 1}]

}, Axes → True, ImageSize → Small]

text

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

mathematica_intro.nb 17

Example: Combining Graphics Objects

g3 = GraphicsRow[{g1, g2}]

Export["c:/temp/temp.pdf", g3] (* WARNING: this will overwrite temp.pdf *)

Graphics Demo

text

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

c:/temp/temp.pdf

Advanced: Programmatic Drawing

We can also generate graphics programmatically, which is often more useful. (It is more precise and

more replicable.) For two-dimensional graphics, we create a Graphics object from a list of graphics

primitives such as Point, Line, Arrow, and Text. In this context, point is produced from a list of two

coordinates, a line or arrow is produced from a list of two or more points.

As an example, let us use `Array` to create a list of pairs of pairs of numbers. Each pair of numbers

represents a point. Each pair of pairs therefore represents a line. The `Line` command can accept this

array as a description of a collection of lines, and the result can be drawn by the `Graphics` command.

18 mathematica_intro.nb

Array[{{0, 10 - #}, {#, 0}} &, 11, 0]

Line[%]

Graphics[%]

{{{0, 10}, {0, 0}}, {{0, 9}, {1, 0}}, {{0, 8}, {2, 0}},

{{0, 7}, {3, 0}}, {{0, 6}, {4, 0}}, {{0, 5}, {5, 0}}, {{0, 4}, {6, 0}},

{{0, 3}, {7, 0}}, {{0, 2}, {8, 0}}, {{0, 1}, {9, 0}}, {{0, 0}, {10, 0}}}

Line[{{{0, 10}, {0, 0}}, {{0, 9}, {1, 0}}, {{0, 8}, {2, 0}},

{{0, 7}, {3, 0}}, {{0, 6}, {4, 0}}, {{0, 5}, {5, 0}}, {{0, 4}, {6, 0}},

{{0, 3}, {7, 0}}, {{0, 2}, {8, 0}}, {{0, 1}, {9, 0}}, {{0, 0}, {10, 0}}}]

See http://reference.wolfram.com/mathematica/guide/GraphicsObjects.html for more graphics objects.

See http://reference.wolfram.com/mathematica/tutorial/GraphicsDirectivesAndOptions.html for graphics

directives and options.

Sharing Notebooks

Notebook files are saved with a .nb extension. These are readily shared with anyone who has Mathemat-

ica. However Mathematica allows you to share both static and dynamic content with others.

The most useful format for sharing static content is probably the portable document format (PDF). First,

save your notebook. Then, pick from the Mathematica menus File>SaveAs>Save as Type> PDF

Document. (Alternatively, you can Export the EvaluationNotebook.)

For sharing dynamic content with people who do not have Mathematica, in version 8 and above you can

save your notebook in the computable document format (CDF). These documents can be opened in the

free Wolfram CDF Player. The static content of an ordinary notebook is viewable in the CDF player, but

mathematica_intro.nb 19

the CDF format additionally produces Manipulate objects that are fully interactive in the player. (Also

supported are Dynamic and DynamicModule.)

Manipulate Example

Here is a simple example of the use of Manipulate.

Clear[x]

ManipulateExpand1 + xn, {n, 1, 5, 1}

n

1 + x

If your Manipulate object relies on defined symbols, you will need to use the SaveDefinitions option to

ensure interactivity in the CDF player. Here is an example that uses a function definition. (We give a

fuller discussion of function defintion in a later section.)

ClearAll[f, x, n]

f[x_, n_] := 1 + xn

Manipulate[Expand[f[x, n]], {n, 1, 5, 1}, SaveDefinitions → True]

n

f[x, 1]

Exercise

Create a new notebook and then do the following.

(a) From the menus, pick Format > Style Title and then enter the title “My First Notebook”.

(b) Create a Section cell and enter the subtitle “Text and Expressions”.

(c) Create a Text cell, enter your name, and right justify the cell contents. (Look under the Format>Align-

ment menu.)

(d) Create a Section cell and enter "Just Text".

(e) Create a Text cell and enter the text “My nicely formatted text cell.”.

(e) Create a Section cell and enter the section heading “Just Computation”.

(f) Create an Input cell (the default style), enter an expression, and evaluate it.

Some Useful Resources

Remember, the Mathematica documentation is generally excellent, and it is available both in the Note-

20 mathematica_intro.nb

book and online. Nevertheless, here are a few supplementary resources.

◼ Input Syntax: http://reference.wolfram.com/mathematica/tutorial/InputSyntax.html

◼ Herbert Halpern's introduction:
https://math.uc.edu/~halpern/Mathematicafall09/Ho/Mathematicabook24.pdf

◼ Wolfram’s Mathematica tutorials: https://www.wolfram.com/learningcenter/tutorialcollection/

◼ Pitfalls for Mathematica beginners: http://mathematica.stackexchange.com/questions/18393/what-are-
the-most-common-pitfalls-awaiting-new-users

◼ Leonid Shifrin’s Mathematica Programming: http://www.mathprogramming-intro.org/

Functions: Some Basic Considerations
Mathematically, a function maps elements of one set to elements of another set. This is a very general

concept. Computationally, functions are usually much more restricted in scope. For example, a func-

tion will often specify a particular transformation of an “input argument” into a new value that the func-

tion returns.

Pure Functions

Suppose that we want a function to return x2 for any input x. Mathematica allows us to create this in a

very natural way with the `Function` command: first we give names to the inputs. (The names are

called parameters or formal parameters; the input values are called arguments or actual parameters.)

Then we use these names to specify the transformation of input(s) into output(s).

f1 = Functionx, x2

Functionx, x2

Note that the formal parameters are names that are local to the function definition. You do not need to

worry about any global variable having the “same” name.

Our function can now be applied to different arguments, numerical or symbolic.

f1[2]

f1[s]

4

s2

The basic considerations are that simple. If we want a function of more than one variable, we can

provide a list of parameter names.

f2 = Function{x, y}, x2 + y2

f2[2, 3]

Function{x, y}, x2 + y2

13

We bound the names `f1` and `f2` to our functions so that we could use them later. But these functions

mathematica_intro.nb 21

are usable even if we do not name them. Here is a simple example:

Functionx, x2[2]

4

Anonymous functions are useful whenever a function will only be used once, so that naming it is a

needless expense. (We will see a number of examples of this later on.)

Alternative Notation for Pure Functions

Mathematica provides a convenient shorthand equivalent using a familiar mathematical notation. (You

can produce the “mapsto” arrow as `[Esc]fn[Esc]`.)

f3 = x x2

f3[2]

f3[s]

Functionx, x2

4

s2

In our function definitions up to now, we have given names to the function parameters. These names

are local to the function definition, so this is usually harmless and serves as an aid to reading. But we

are not required to name our arguments. Instead we can refer to them by their slot numbers. This

allows us to skip naming the formal parameters and instead refer to them by their default labels: #1, #2,

etc. (Also, # is equivalent to #1.)

Here is a function pure function with one formal parameter and another with two formal parameters.

Function#2

Function#12 + #22

#12 &

#12 + #22 &

Notice that Mathematica represents these function definition in an alternative notation, using a postfixed

ampersand. We are also free to use this notation directly. It is a bit more compressed but perhaps a

little less readable. It is a very common Mathematica usage. However, especially if you will share your

code, it is worth asking whether the gain from the compressed syntax offsets the cost of reduced

readability.

Local Variables

Often we want to declare local variables inside our function definition. In Mathematica we do this with

the `Module` command, which takes a list of variable names as its first argument, which are then

treated as local in the expression that is its second argument. The second argument can be a com-

pound expression, where subexpressions are separated by semicolons. The last expression evaluated

is the value of the module.

22 mathematica_intro.nb

Functionx, Module{s, c}, s = Sin[x]; c = Cos[x]; s2 + c2

%Pi  2

Functionx, Module{s, c}, s = Sin[x]; c = Cos[x]; s2 + c2

1

`Module` also allows the local variables to be initialized when declared.

Functionx, Module{s = Sin[x], c = Cos[x]}, s2 + c2

%[Pi / 4]

Functionx, Module{s = Sin[x], c = Cos[x]}, s2 + c2

1

Advanced: Argument Passing

The default behavior of Mathematica is that function arguments are passed as the value of the expres-

sion. If you forget about this, you are likely to run into the following error message:

Set::setps {...} in the part assignment is not a symbol

Here is a simple way to produce this error:

{0}[[1]] = 1;

Set::setps : {0} in the part assignment is not a symbol. 

However the following does not produced this error:

x = {0}; x[[1]] = 1; x

{1}

The difference is that `Set` changes the value associated with a symbol (in this case, `x`). You need a

symbol to associate with the value.

Unfortunately, the place where you are most likely to encounter this error is slightly more obscure: if you

pass a symbol to a function, it will be evaluated before the function body is exected. (There are ways to

work around this, e.g. using `HoldFirst`, which we do not discuss.)

Clear[x, s]

s = {0}

Function[x, x[[1]] = 1]

%[s] (* problem: s will be evaluated before function is executed *)

{0}

Function[x, x〚1〛 = 1]

Set::setps : {0} in the part assignment is not a symbol. 

1

Advanced: Closures

mathematica_intro.nb 23

Functions can return functions, and the returned functions can close over the local variables of the

creating function. (A closure can “recall” the environment it was created in.)

ClearAll[plusn]

plusn = n (x x + n)

plus2 = plusn[2]

plus2[5]

Function[n, Function[x, x + n]]

Function[x$, x$ + 2]

7

We see that `plus2` “recalls” that, when it was created, n had the value 2.

Note Mathematica’s special use of the dollar sign for internally defined variable names. Do not use the

dollar sign in your own variable names.

Functions via Pattern Matching and Delayed Evaluation

A popular approach to function definition is through a delayed-evaluation assignment. The function

name and underscore-tagged formal parameters appear to the left, then the delayed evaluation assign-

ment operator `:=`, and finally the function definition on the right. Note that because we use delayed

evaluation, this definition simply defines a symbol and does not generate any output.

ClearAll[xsq03]

xsq03[x_] := x2

xsq03[33]

1089

We can see this difference when we look at the Head or FullForm of the different expressions.

Map[Head, {xsq01, xsq02, xsq03}]

Map[FullForm, {xsq01, xsq02, xsq03}]

{Symbol, Symbol, Symbol}

{xsq01, xsq02, xsq03}

Nevertheless, as we have seen, all three approaches give us a usable “function”.

There are subtle advantages to the different forms. A pure function can be readily added to an expres-

sion that needs a function “on the fly”. However, the delayed evaluation syntax allows easy inclusion of

default values for a function paramater, given after a colon. (Pattern matching can also be used for type

checking, but we do not cover that here.)

xsq04[x_: 2] := x * x

xsq04[]

4

24 mathematica_intro.nb

Advanced: More Closures

We can also return closures from functions defined by delayed evaluation.

ClearAll[plusn]

plusn[n_] := (x x + n)

plus2 = plusn[2] (* produces a closure *)

plus2[5]

Function[x$, x$ + 2]

7

We see that `plus2` “recalls” that, when it was created, n had the value 2.

Note again Mathematica’s special use of the dollar sign for internally defined variable names.

Lists
The list is a fundamental Mathematica data type. We use it to represent sets, vectors, and matrices.

Quick Introduction

A list is just an ordered collection of items.

Enumeration

We can create a list by enumerating comma-separated elements within curly braces.

lst01 = {1, 2, 3}

lst02 = {4, 5, 6}

{1, 2, 3}

{4, 5, 6}

The numbers are the elements of the list. We can join lists to make a bigger list:

Join[lst01, lst02]

{1, 2, 3, 4, 5, 6}

A list can be empty:

lst = {}

{}

A list can contain anything as its elements, including other lists. For example, we represent a matrix as

a list of lists.

mA = {lst01, lst02}

{{1, 2, 3}, {4, 5, 6}}

mathematica_intro.nb 25

We can use the `MatrixForm` command to get a more intuitive visual display of a matrix.

MatrixForm[mA]


1 2 3
4 5 6



Note: `{a,b,c}` is just shorthand for `List[a,b,c]`. We can use `FullForm` to see this:

Clear[a, b, c]

FullForm[{a, b, c}]

List[a, b, c]

List Arithmetic

Arithmetic operations on lists are elementwise. So is exponentiation.

lst01 + lst02

lst01 - lst02

lst01 * lst02

lst01  lst02

lst01^lst02

{5, 7, 9}

{-3, -3, -3}

{4, 10, 18}


1

4
,
2

5
,
1

2


{1, 32, 729}

Scalar operations are also possible.

lst01 + 2

lst01 - 2

lst01 * 2

lst01  2

lst01^2

{3, 4, 5}

{-1, 0, 1}

{2, 4, 6}


1

2
, 1,

3

2


{1, 4, 9}

26 mathematica_intro.nb

2 + lst02

2 - lst02

2 * lst02

2  lst02

2^lst02

{6, 7, 8}

{-2, -3, -4}

{8, 10, 12}


1

2
,
2

5
,
1

3


{16, 32, 64}

Indexing

Using double brackets, we can access the elements of a list with a unit-based index. To index back-

wards from the end of the list, use negative indexes.

lst01 = {1, 2, 3}

lst02 = {4, 5, 6}

lst01〚1〛

lst01〚-1〛

{1, 2, 3}

{4, 5, 6}

1

3

Lists can contain lists. We can index the outer list to get the inner lists. We can then index the inner

lists to get their elements. There is also a shorthand for this nested indexing: separate the levels at

which you are indexing by commas.

lstlst = {lst01, lst02}

lstlst〚1〛〚2〛

lstlst〚1, 2〛

{{1, 2, 3}, {4, 5, 6}}

2

2

Note: `lst[[1]]` is just a shorthand for `Part[lst,1]`. For more details about indexing, see the documenta-

tion for `Part`.

mathematica_intro.nb 27

Digression on Summing and Accumulating (Fold and FoldList)

Use `Total` to sum up the elements of a list.

Total[{a, b, c}]

a + b + c

This is equivalent to using the list elements as arguments to `Plus`.

FullForm[Total[{a, b, c}]]

Plus[a, b, c]

We are going to digress a bit and explore this observation in some detail. A Mathematica list has a

“head” of list, which is available as part 0 of the list.

Head[{a, b, c}]

{a, b, c}〚0〛

List

List

Mathematica allows us to replace the head, using the `Apply` command (equivalent to the `@@` opera-

tor). The Apply command simply replaces the “head” of an expression with a specified function.

Clear[f, a, b]

Apply[f, {a, b}]

f[a, b]

We can use `Apply` to replace the “head” of a list with `Plus` in order to find the total sum of list ele-

ments. Recall that Mathematica provides the `@@` shorthand for `Apply`, which makes this a little

easier to write (but perhaps a little less understandable).

Apply[Plus, {a, b, c}]

% === Plus @@ {a, b, c}

a + b + c

True

Now for one more digression. Let us do exactly the same thing using folds. Basically, a fold repeatedly

apply a binary operation, using an accumulated value and successive elements of a list. We have to

provide an initial value for the accumulator. Folds are common in functional programming languages;

showing its functional emphasis, Mathematica supports folds.

ClearAll[f, x0]

Fold[f, x0, {x1, x2, x3}]

f[f[f[x0, 2], 0.628989], x3]

For example, we can form the total sum of list elements by folding `Plus` over the list with a `0` initial

value for the accumlator.

28 mathematica_intro.nb

Fold[Plus, 0, {a, b, c}]

a + b + c

This is a reminder that in Mathematica there are often many way to accomplish a single goal. Usually

the best choice to make will be the one that you will find easiest to read when you return to your code.

Exercise: use `Fold`, `Times`, and `Range` to produce 10!.

Fold[Times, 1, Range[10]] ⩵ 10!

True

We can use `Accumulate` to produce the cumulative sum. The last term is the same a folding `Plus`

over the list, but we also get intermediate terms.

Accumulate[{a, b, c}]

{a, a + b, a + b + c}

`Accumulate` is a special example of folding a list and keeping the intermediate values. This is exactly

what the `FoldList` command does. There is one important difference: `FoldList` includes an initial

value (that we provide). But we can use `Rest` to discard this initial value.

Rest[FoldList[Plus, 0, {a, b, c}]]

{a, a + b, a + b + c}

We can similarly accumulate products.

Rest[FoldList[Times, 1, {a, b, c}]]

{a, a b, a b c}

List Creation

Constant Arrays and Ranges

Mathematica provides powerful facilities for the creation and manipulation of lists.

If you plan to repeatedly enumerate a single value, you may find it faster to use `ConstantArray`. We

can use `==` to do an equality comparison of lists.

list01 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

list02 = ConstantArray[0, 10];

list01 ⩵ list02

True

Integer intervals are a common need, and we usually create them with `Range`. For example, let us

create the first twenty natural numbers.

nat20 = Range[20]

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

You can also specify a minimum as well as a maximum value for a range of integers. Note that the

mathematica_intro.nb 29

range is inclusive: it contains the minimum and maximum values. A stepsize can be given as a third

argument.

Range[5, 20]

Range[5, 20, 2]

{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

{5, 7, 9, 11, 13, 15, 17, 19}

The arguments to `Range` do not have to be integers.

Range[1.5, 10.5, 0.5]

{1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5}

Prepending and Appending Elements

 You can Append or Prepend to a list. These commands return a new list, without changing the value of

the old list.

row = ConstantArray[0, 8]

Append[row, -1]

Prepend[row, 1]

row

{0, 0, 0, 0, 0, 0, 0, 0}

{0, 0, 0, 0, 0, 0, 0, 0, -1}

{1, 0, 0, 0, 0, 0, 0, 0, 0}

{0, 0, 0, 0, 0, 0, 0, 0}

If you want not to produce a new list but to change an existing list, use `AppendTo` and `PrependTo`

instead.

row = ConstantArray[0, 8];

AppendTo[row, -1];

PrependTo[row, 1];

row

{1, 0, 0, 0, 0, 0, 0, 0, 0, -1}

Suppose I append a list to an empty list:

lst = {}

AppendTo[lst, row]

{}

{{1, 0, 0, 0, 0, 0, 0, 0, 0, -1}}

Note that lst has one element, which is a list.

30 mathematica_intro.nb

Length[lst]

1

List Creation using Table

The `Table` command is a more general facility for list creation. It therefore can readily accomplish the

same task as `Range`, but slightly more verbosely.

Range[20] ⩵ Table[i, {i, 20}]

True

The Table command takes as its first argument an expression in a variable and, as its second argu-

ment, an “iterator” in that variable. An iterator is just a list with a special format. The iterator may take a

few basic forms. The form with only a positive integer stop value, as in `{i,stop}`, will produce numbers

natural numbers up to stop. You can also specify a start and stop value, as in `{i,start,stop}`. The default

is a unit increment, but you can change that by specifying a third argument, as in

`{i,start,stop,increment}`. An alternative is to offer an explicit list of values, as in `{i,mylist}`.

Table[0, {5}]

Table[i, {i, 5}]

Table[i, {i, 6, 10}]

Table[i, {i, 1.5, 10.5, 0.5}]

lst = Range[5, 1, -1]; Table[i * i, {i, lst}]

{0, 0, 0, 0, 0}

{1, 2, 3, 4, 5}

{6, 7, 8, 9, 10}

{1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5}

{25, 16, 9, 4, 1}

The first argument to `Table` can be any expression you want. For example, to produce a list of lists,

the first argument can be a list of outputs.

tbl = Tablex, x2, {x, 0, 5}

{{0, 0}, {1, 1}, {2, 4}, {3, 9}, {4, 16}, {5, 25}}

The `Table` command produces nested lists when given multiple iterators. Here for example is a simple

list of lists.

Table[i * j, {i, {-1, 1}}, {j, 3}]

{{-1, -2, -3}, {1, 2, 3}}

Advanced: Note that `Table` localizes the iterator with dynamic scoping, so expressions matching the

iterator variable will be iterated. (I do not recommend relying on dynamic scoping; it is too easy to lose

track of it.) Example:

mathematica_intro.nb 31

y := Sini * Pi  2

Table[y, {i, 4}]

{1, 0, -1, 0}

List Creation from External Data

Naturally Mathematica can build lists from external data. For convenience, Mathematica ships with

some sample data. Here we simply replicate the example at https://reference.wolfram.com/language/tu-

torial/ReadingTextualData.html. First we take a look at the data:

FilePrint["ExampleData/numbers"]

11.1 22.2 33.3

44.4 55.5 66.6

Then we read it into a list:

ReadList["ExampleData/numbers", Number]

{11.1, 22.2, 33.3, 44.4, 55.5, 66.6}

Mathematica also includes web access to a variety of data sets. For example, `CountryData[]` produces

a list of countries in the database. We can use this same function to produce a variety of sublists. For

example, we query for the membership of the EU, the G8, or the G20. These are returned as lists.

listG8 = CountryData["G8"]

 Canada , France , Germany , Italy , Japan , United Kingdom , United States 

Note: The special formatting reflects the fact that the list elements are country entities. Such entities

may have many predefined properties. See the documentation for details, but the following example

provides a hint at what is possible.

us = Entity["Country", "UnitedStates"];

gdp2014 = EntityProperty["Country", "GDP", {"Date" → DateObject[{2014}]}];

pop2014 = EntityProperty["Country", "Population", {"Date" → DateObject[{2014}]}];

us[gdp2014]  us[pop2014]

$54025.3 per person per year

As a final example, Mathematica can of course read standard data formats, such as comma-separated

values (CSV) files. To illustrate this, let us create one and then read it in.

32 mathematica_intro.nb

data = RandomInteger[100, {4, 3}] (* make some data *)

(* choose a filename (it must be safe to overwrite!): *)

fname = FileNameJoin[{$TemporaryDirectory, "temp.csv"}];

Export[fname, data]; (* export the data to file *)

FilePrint[fname] (* look at what we stored *)

newdata = Import[fname]; (* import the stored data *)

newdata ⩵ data (* check that the data are unchanged *)

{{12, 62, 47}, {95, 19, 59}, {19, 4, 78}, {65, 64, 80}}

12,62,47

95,19,59

19,4,78

65,64,80

True

List Manipulation

Mathematica provides powerful list manipulation facilities. Here we touch on a few of the most common

ones.

Accessing and Changing List Elements

You can access list elements with doubled brackets. Mathematica uses unit based indexing of the list

elements; negative indexes count from the end of the list. Here we make a new list out of elements of

the old list.

lst01 = Range[4];

{lst01〚1〛, lst01〚-1〛}

{1, 4}

Mathematica lists are mutable. We can use indexing on the left side of an assignment to change the

value of an element. Mathematica effectively copies lists on assignment, so in the following example

`lst01` is changed but `lst02` is not changed. (I.e., `lst01` and `lst02` refer to two different lists.) Note

the use of a list of indexes to change multiple elements.

lst01 = Range[4]; lst02 = lst01;

lst01〚{1, -1}〛 = {91, 94};

lst01

lst02

{91, 2, 3, 94}

{1, 2, 3, 4}

We can retrieve and replace contiguous elements with an index range specified as `start;;stop` or

`start;;stop;;step`.

mathematica_intro.nb 33

x = Range[15]

x〚4 ;; 10〛

x〚4 ;; 10 ;; 2〛

x〚4 ;; 10 ;; 2〛 = 0

x

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

{4, 5, 6, 7, 8, 9, 10}

{4, 6, 8, 10}

0

{1, 2, 3, 0, 5, 0, 7, 0, 9, 0, 11, 12, 13, 14, 15}

We can retrieve and replace multiple parts by using a list of indexes.

x = Range[10]

x〚{1, 1, 3, 7}〛

x〚{1, 2, 3}〛 = {21, 22, 23}

x

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{1, 1, 3, 7}

{21, 22, 23}

{21, 22, 23, 4, 5, 6, 7, 8, 9, 10}

Other commands for accessing specified elements include `First`, `Rest`, `Most`, `Last`, `Extract`,

`Take`, and `Drop`.

Advanced: Accessing and Changing List Elements

The indexing brackets are actually a shorthand for the `Part` command. But most commonly, we use

the the indexing brackets.

Clear[lst]

lst〚1〛 // FullForm // Quiet

Part[lst, 1]

If we want a closer look at what is involved with this assignment with an index, we can again look at the

`FullForm`.

Clear[x]

HoldForm[FullForm[x〚1〛 = 99]]

Set[Part[x, 1], 99]

Assignment with an index mutates an existing list. When a new list is preferred, use `ReplacePart`,

which applies a rule (rather than using `Set`).

34 mathematica_intro.nb

x = {0};

xnew = ReplacePart[x, 1 → 99]

x (* unchanged! *)

{99}

{0}

Always creating a new list is safer, because it removes ambiguity about the contents of a list. However,

it is computationally more costly, especially if many changes will be sequentially made to a large list. It

is up to the usef to make the right trade-offs.

Advanced: Although Mathematica lists are mutable, they must be changed indirectly, using the symbol

that refers to the list. (In this case, the symbol `lst01`.) For example, the following produces an error:

{0}[[1]] = 1;

Set::setps : {0} in the part assignment is not a symbol. 

This matters when passing lists to functions, because the default behavior is to evaluate any argument

before evaluating the function.

Reversing, Sorting, Accumulating

Lists can be reversed, sorted, and accumulated (as a cumulative sum).

myList = RandomInteger[20, 5] (* a list of 5 random numbers *)

mySortedList = Sort[myList]

myReversedList = Reverse[mySortedList]

myCumulativeSum = Accumulate[mySortedList]

{3, 7, 12, 0, 2}

{0, 2, 3, 7, 12}

{12, 7, 3, 2, 0}

{0, 2, 5, 12, 24}

By using `SortBy`, we can sort a list on arbitrary criteria. For example, we can use `SortBy` to sort the

G8 countries by population. (We will reverse the sign on population in order to sort from greatest to

least.)

popSortedG8 = SortBy[listG8, country -country[pop2014]]

 United States , Japan , Germany , France , United Kingdom , Italy , Canada 

Map and MapThread

Often we wish to apply some function to every element of a list in order to produce a new list of values.

For this we use `Map`, for which `/@` is an alternate infix syntax.

mathematica_intro.nb 35

ClearAll[f]

Map[f, {x1, x2, x3}]

f /@ {x1, x2, x3}

{f[2], f[0.769947], f[x3]}

{f[2], f[0.844339], f[x3]}

Recall that Mathematica allows the creation of anonymous (unnamed) functions. This practice is very

common when using `Map`.

Mapx x2, Range[20]

x x2 /@ Range[20]

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400}

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400}

Recall that Mathematica allows us to designate parameter slots instead of naming our paramters. Here

is our list of squares once again, produced with this syntax.

Map#2 &, nat20

#
2 & /@ nat20

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400}

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400}

However, can does not imply should, and the notation in the last example undercuts readability for most

people.

If the function used by `Map` produces a list, then we get a list of lists as our result.

Mapctry ctry〚2〛, ctry[gdp2014]  10^12, popSortedG8

UnitedStates, $17.419 per year ,

Japan, $4.60146 per year , Germany, $3.85256 per year ,

France, $2.82919 per year , UnitedKingdom, $2.94189 per year ,

Italy, $2.14434 per year , Canada, $1.78666 per year 

`MapThread` generalizes `Map` to functions that have multiple arguments. The arguments are given as

a list of lists of values, where the inner lists have a common length.

MapThread[f, {{x1, x2, x3}, {y1, y2, y3}}]

{f[2, y1], f[0.96874, y2], f[x3, y3]}

For example, we can make a list of rules like this:

MapThread[Rule, {{x1, x2, x3}, {y1, y2, y3}}]

{2 → y1, 0.989897 → y2, x3 → y3}

`MapThread` can do much more than this; see the documentation. To give just one example, we can

apply a list of functions to a list of arguments.

36 mathematica_intro.nb

ClearAll[f, g, h, x, y, z]

MapThread[{f, x}  f[x], {{f, g, h}, {x, y, z}}]

{f[x], g[y], h[z]}

Aside: If a function has already been applied to list of arguments, you can use `Thread` instead of

`MapThread`. This can be used to thread equations. Somewhat surprisingly, `Thread` allows an

argument to be a constant.

Thread[f[{x1, x2, x3}, {y1, y2, y3}]]

Thread[{x1, x2, x3} == {y1, y2, y3}]

Thread[{x1, x2, x3} ⩵ 0]

Thread[0 == {y1, y2, y3}]

{f[2, y1], f[0.629764, y2], f[x3, y3]}

{2 ⩵ y1, 0.491755 ⩵ y2, x3 ⩵ y3}

{False, False, x3 ⩵ 0}

{0 ⩵ y1, 0 ⩵ y2, 0 ⩵ y3}

Exercise: noting that {x,y} is the same as List[x,y], use `MapThread` or `Thread` to transpose a rectangu-

lar list of lists.

Thread[{{x1, x2, x3}, {y1, y2, y3}}]

MapThread[List, {{x1, x2, x3}, {y1, y2, y3}}]

{{2, y1}, {0.13913, y2}, {x3, y3}}

{{2, y1}, {0.101357, y2}, {x3, y3}}

gdpG8 = Map[c c[gdp2014], listG8];

popG8 = Map[c c[pop2014], listG8];

gdppcG8 = MapThread[{c, g, p}  {c〚2〛, Round[g / p]}, {listG8, gdpG8, popG8}]

Canada, $50600 per person per year , France, $44136 per person per year ,

Germany, $47198 per person per year , Italy, $35052 per person per year ,

Japan, $36454 per person per year , UnitedKingdom, $46288 per person per year ,

UnitedStates, $54025 per person per year 

From Lists of Lists to Formatted Tables

We often want to present data in tabular form. A list of lists can be nicely formatted with `TableForm` or

`Grid`.

TableForm

The `Table` command can produce a list of lists, using two expressions. Two-dimensional tables can be

nicely formatted with the `TableForm` command. Here is an example.

mathematica_intro.nb 37

tbl = Tablex, x2, {x, 0, 5}

TableFormtbl, TableHeadings → None, "x", "x2"

TableFormtbl, TableHeadings → None, "x", "x2", TableDirections → Row

{{0, 0}, {1, 1}, {2, 4}, {3, 9}, {4, 16}, {5, 25}}

x x2

0 0
1 1
2 4
3 9
4 16
5 25

x 0 1 2 3 4 5
x2 0 1 4 9 16 25

Recall that the `Table` command also accepts multiple iterators, producing nested lists of lists. Here is

an example.

ivals = Range[3];

xvals = Range[0, 10];

tbl = Tablexi, {i, ivals}, {x, xvals};

formattedTable =

TableForm[tbl, TableHeadings → {ivals, xvals}, TableAlignments → Right]

0 1 2 3 4 5 6 7 8 9 10
1 0 1 2 3 4 5 6 7 8 9 10
2 0 1 4 9 16 25 36 49 64 81 100
3 0 1 8 27 64 125 216 343 512 729 1000

We may want our tables to be framed and labeled.

ySortedG8 = SortBy[gdppcG8, x -x〚2〛]; (* sort G8 by GDP per capita *)

table = TableForm[ySortedG8, TableHeadings → {None, {"Country", "GDP p.c."}}];

Labeled[Framed[table], "G8 GDP per capita for 2014"]

Country GDP p.c.

UnitedStates $54025 per person per year

Canada $50600 per person per year

Germany $47198 per person per year

UnitedKingdom $46288 per person per year

France $44136 per person per year

Japan $36454 per person per year

Italy $35052 per person per year

G8 GDP per capita for 2014

For additional options, read the documentation for the `Table` command.

38 mathematica_intro.nb

Using `Grid` for Two-Dimensional Tables

We can achieve fine formatting control with the `Grid` command. (Read the documentation.) But it still

provides simple way to produce a two dimensional display of nested lists.

mydata = Partition[Range[15], 3];

Grid[mydata]

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15

We can format gridded data, aligning it and adding dividers.

mydata02 = Prepend[mydata, {"header1", "header2", "header3"}];

Grid[mydata02, Alignment → Right, Dividers → {None, 2 → True}]

header1 header2 header3
1 2 3
4 5 6
7 8 9

10 11 12
13 14 15

We can even shade specific rows.

Grid[Prepend[gdppcG8, {"Country", "GDP p.c."}],

Alignment → Left,

Dividers → {None, 2 → True},

Background → {None, 1 → Lighter[Gray, 0.9]}

]

Country GDP p.c.

Canada $50600 per person per year

France $44136 per person per year

Germany $47198 per person per year

Italy $35052 per person per year

Japan $36454 per person per year

UnitedKingdom $46288 per person per year

UnitedStates $54025 per person per year

Plots
Plots are an important way to explore data and functions. Mathematica provides extensive and power-

ful plotting facilities. This section provides only a basic introduction to some core plotting functions.

From Lists to Plots

mathematica_intro.nb 39

For simple list plotting, use the `ListPlot` and `ListLinePlot` commands. These commands return graph

objects that can be manipulated like other objects in Mathematica. For example, you can make a list of

them.

(* make up some data *)

domain = Range[0, 90] * Pi  30;

sinPoints = Map[x {x, Sin[x]}, domain];

(* plot the data *)

sinPlotPoints = ListPlot[sinPoints, ImageSize → Small]

sinPlotLine = ListLinePlot[sinPoints, PlotStyle → Thin, ImageSize → Small]

2 4 6 8

-1.0

-0.5

0.5

1.0

2 4 6 8

-1.0

-0.5

0.5

1.0

Here is an application to the example life-table data that ships with Mathematica. We get the data like

this:

ExampleData[] (* see what categories are available *)

data = ExampleData[{"Statistics", "USLifeTable2003"}];

{AerialImage, ColorTexture, Dataset, Geometry3D,

LinearProgramming, MachineLearning, Matrix, NetworkGraph, Sound,

Statistics, TestAnimation, TestImage, TestImage3D, Text, Texture}

We need to know which columns to use. We could try looking at the original data:

ExampleData[{"Statistics", "USLifeTable2003"}, "Source"]

National Vital Statistics Reports, Vol. 54, No 14, April

19, 2006. http://www.cdc.gov/nchs/data/nvsr/nvsr54/nvsr54_14.pdf

After a little browsing we can figure out what our data must be (Table 1, slightly reformated). However,

there is an easier way: Mathematica’s example data are stored with helpful information, including

column descriptions.

40 mathematica_intro.nb

ExampleData[{"Statistics", "USLifeTable2003"}, "ColumnDescriptions"]

{Left endpoint of age interval., Right endpoint of age interval.,

Probability of dying between AgeLower and AgeUpper.,

Number surviving to AgeLower., Number dying between AgeLower and AgeUpper.,

Person-years lived between AgeLower and AgeUpper.,

Total number of person-years lived above AgeLower.,

Expectation of life at AgeLower.}

We are only going to use the first and third columns to plot the probability of dying against age.

plotdata = Map[x {x〚1〛, x〚3〛}, data]; (* get age and death prob *)

ListPlot[plotdata,

AxesLabel → {"Age (in years)", "Probability of Dying"},

PlotLabel → "Death Hazard, by Age (US, 2003)"]

20 40 60 80 100
Age (in years)

0.05

0.10

0.15

Probability of Dying
Death Hazard, by Age (US, 2003)

Charts with Multiple Plots

The `ListPlot` and `ListLinePlot` commands return graph objects that can be manipulated like other

objects in Mathematica. For example, you can make a list of them.

sinPlots = {sinPlotPoints, sinPlotLine}


2 4 6 8

-1.0

-0.5

0.5

1.0

,
2 4 6 8

-1.0

-0.5

0.5

1.0



This can be very useful, but for pure display purposes, there are more aesthetic options. Use

`GraphicsRow`, `GraphicsColumn`, and `GraphicsGrid` to group list of plots into a single chart with

subfigures. For example,

mathematica_intro.nb 41

GraphicsRow[sinPlots]

2 4 6 8

-1.0

-0.5

0.5

1.0

2 4 6 8

-1.0

-0.5

0.5

1.0

Fine control can be achieved with the many options, which you can see with `Options[ListPlot]`, and

Mathematica provides help for each option. If you have a style you would like to apply to multiple plots,

you can collect the options in a list, say `myoptions`, and then using `Evaluate[myoptions]` when you

need it.

myoptions = {PlotRange → {{0, 3 * Pi}, {-1.03, 1.03}},

PlotStyle → Thin,

GridLines → {{Pi, 2 Pi}},

GridLinesStyle → Directive[Thick, Yellow]};

sinPlotPoints02 = ListPlot[sinPoints, Evaluate[myoptions]];

sinPlotLine02 = ListLinePlot[sinPoints, Evaluate[myoptions]];

GraphicsRow[{sinPlotPoints02, sinPlotLine02}]

2 4 6 8

-1.0

-0.5

0.5

1.0

2 4 6 8

-1.0

-0.5

0.5

1.0

Use `Show` to combine multiple plots into a single plot.

Show[{sinPlotLine02, sinPlotPoints02}]

2 4 6 8

-1.0

-0.5

0.5

1.0

If you need very precise placement of the plot markers, see the discussion at

http://mathematica.stackexchange.com/questions/2214/point-renderings-slightly-off-in-mathematica

42 mathematica_intro.nb

Plotting Time Series

We can use `DateListPlot` to plot time series. We begin by creating a series of date objects. We then

use `Map` over these dates to produces lists of GDP and price-index entity properties, which we use

fetch the associated GDP and population time series for one country.

dates = Map[DateObject[{#}] &, 2004 + Range[10]];

gdpProps = Map[EntityProperty["Country", "GDP", {"Date" → #}] &, dates];

priceProps = Map[EntityProperty["Country", "PriceIndex", {"Date" → #}] &, dates];

ctry = Entity["Country", "UnitedStates"];

gdps = Map[ctry[#] &, gdpProps];

prices = Map[ctry[#] &, priceProps];

DateListPlot[Transpose[{dates, gdps / prices}], PlotLabel → "Real GDP"]

2006 2008 2010 2012 2014
1.40×1011

1.45×1011

1.50×1011

1.55×1011

1.60×1011

Real GDP

Exercise: Read the Mathematica documentation for CSV handling (at https://reference.wolfram.com/lan-

guage/ref/format/CSV.html). Note in particular the possibility of specifying a `DataStringFormat`. Down-

load US unemployment data in CSV format from the Federal Reserve Economic Database (e.g., http-

s://research.stlouisfed.org/fred2/series/UNRATE/downloaddata). Plot this data using `DateListPlot`.

You might end up with code resembling:

mathematica_intro.nb 43

Import[datadir <> "UNRATE.csv",

"DateStringFormat" → {"Year", "-", "Month", "-", "Day"}

];

DateListPlot[%[[2 ;;]]]

1960 1980 2000
0

2

4

6

8

10

Cobweb Plot

Cobweb plots are a popular way to represent the evolution of first-order recurrence relationship.

As of Mathematica 10.2, we can use `ListStepPlot` to almost get a good cobweb diagram. Unfortu-

nately, as of version 10.2, it is not yet possible to get rid of a line segment that is outside of the data.

logisticPath = NestList2.75 * # * 1 - # &, 0.4, 10

ListStepPlot[Transpose[{logisticPath, logisticPath}], "Left", PlotRange → All,

Prolog → Line[{{0.4, 0.4}, {0.8, 0.8}}]]

(* as of Mma 10.2 can use StepLinePlot *)

{0.4, 0.66, 0.6171, 0.649791, 0.625797,

0.643981, 0.630491, 0.640673, 0.63308, 0.638797, 0.634523}

0.2 0.3 0.4 0.5 0.6

0.40

0.45

0.50

0.55

0.60

0.65

This limitation means that for a good cobweb plot, we are still forced to manipulate the data.

44 mathematica_intro.nb

cobwebPoints = Partition[Riffle[logisticPath, logisticPath], 2, 1]

ListLinePlot[cobwebPoints, PlotRange → All,

Prolog → {Line[{{0, 0}, {1, 1}}]},

PlotRange → All]

{{0.4, 0.4}, {0.4, 0.66}, {0.66, 0.66}, {0.66, 0.6171}, {0.6171, 0.6171},

{0.6171, 0.649791}, {0.649791, 0.649791}, {0.649791, 0.625797},

{0.625797, 0.625797}, {0.625797, 0.643981}, {0.643981, 0.643981},

{0.643981, 0.630491}, {0.630491, 0.630491}, {0.630491, 0.640673},

{0.640673, 0.640673}, {0.640673, 0.63308}, {0.63308, 0.63308}, {0.63308, 0.638797},

{0.638797, 0.638797}, {0.638797, 0.634523}, {0.634523, 0.634523}}

0.45 0.50 0.55 0.60 0.65

0.40

0.45

0.50

0.55

0.60

0.65

Exploring Functions with Plots

For two-dimensional function plotting, use the Plot command. For three-dimensional function plotting,

use the Plot3D command. Get the Mathematica help in the usual way, and read it carefully.

Basic 2D Function Plotting

The Plot command provides simple 2D function plots. The first argument is an expression that involves

a variable, and the second argument specifies the domain for that variable. The second argument is in

the form {x,xmin,xmax}, and such Mathematica calls such expressions “iterators”.

Clear[x]

Plotx2, {x, -2, 2}, ImageSize → Small

-2 -1 1 2

1

2

3

4

Fine control can be achieved with the many options, which you can examine by giving the command

`Options[Plot]`. Naturally, Mathematica provides help for each option. If you have a style you would like

mathematica_intro.nb 45

to apply to multiple plots, you can collect the options in a list, say `myoptions`, and then using

`Evaluate[myoptions]` when you need it. In our notebooks, we often use the `ImageSize` option, as

above. You can also use the `ImageSize` option to specify the width or height of your plot, in pixels.

myoptions = {ImageSize → 250, PlotRange → {{0, 3 * Pi}, {-1.01, 1.01}},

GridLines → {{Pi, 2 Pi}, {}}, GridLinesStyle → Directive[Thick, Yellow]};

GraphicsRow[{Plot[Sin[x], {x, 0, 10}, Evaluate[myoptions]],

Plot[Cos[x], {x, 0, 10}, Evaluate[myoptions]]}]

2 4 6 8

-1.0

-0.5

0.5

1.0

2 4 6 8

-1.0

-0.5

0.5

1.0

You can specify a list of expressions to be plotted together. You can also specify colors with the

`PlotStyle` option.

Clear[x]

Plotx2, x3, x4, {x, -2, 2},

ImageSize → Medium, PlotStyle → {Red, Green, Blue}

-2 -1 1 2

-5

5

Advanced: Manipulate

Use Manipulate to allow dynamic exploration of function plots.

46 mathematica_intro.nb

Clear[a, x]

ManipulatePlota * x2, {x, -2, 2}, PlotRange → {-2, 2}, ImageSize → Small,

{a, -1, 1}

a

-2 -1 1 2

-2

-1

1

2

Clear[a, x]

Manipulate

Plota * x2, a * x3, a * x4, {x, -2, 2}, PlotRange → {-16, 16},

ImageSize → 250, PlotStyle → {Red, Green, Blue},

{a, -1, 1}

a

-2 -1 1 2

-15

-10

-5

5

10

15

Basic 3D Function Plotting

The Plot3D command provides simple 3D surface plots of functions. The first argument is an expression

that involves two variables, and the second and third arguments specify the domain for those variable.

The second and third arguments are in the form {x,xmin,xmax}, and such Mathematica calls such

expressions “iterators”. We can specify additional options, such as ImageSize, order to adjust the plot

characteristics. The most important of may be `ViewPoint`, which sets the point in space from which

the plot is viewed. For advanced usage, see http://www.wolfram.com/training/courses/vis422.html

mathematica_intro.nb 47

Clear[k, n]

cd = k^α * n^1 - α /. {α → 0.3}

Plot3D[cd, {k, 0, 1}, {n, 0, 1}, ImageSize → Small, ViewPoint → {-5, 2, 1.5}]

k0.3 n0.7

Sometimes it is convenient to view three dimensional functions as contours.

ContourPlot[cd, {k, 0, 1}, {n, 0, 1}, ImageSize → Small]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ContourPlot[cd, {k, 0, 1}, {n, 0, 1},

Contours → {0.25, 0.5, 0.75},

ContourLabels → All,

ContourShading → None,

ImageSize → Small]

0.25

0.5

0.75

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Basics: Sets, Vectors, and Matrices

48 mathematica_intro.nb

Lists as Sets
Mathematica does not have a separate set type (as of version 10). Instead, it defines set operations on

lists.

Lists differ from sets in that order matters and duplicate elements matter. We can explicitly discard

duplicate elements with the `DeleteDuplicates` command.

s1 = {1, 2, 2, 3, 3, 3};

DeleteDuplicates[s1]

{1, 2, 3}

Basic Set Operations and Set Relations

For more detail than provided in this section, see the Wolfram Language Guide entitled Operations on

Sets.

Union and Intersection

The set operation commands `Union` and `Intersection` conveniently discard duplicates from each set.

s1 = {1, 2, 2, 3, 3, 3}; s2 = {3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5};

Union[s1, s2]

Intersection[s1, s2]

{1, 2, 3, 4, 5}

{3}

However, the Subsets command does not discard duplicates.

Subsets[{1, 1, 2}]

{{}, {1}, {1}, {2}, {1, 1}, {1, 2}, {1, 2}, {1, 1, 2}}

Set Difference (Complement)

Mathematica offers the `Complement` command to perform set difference:

s1 = {1, 2, 2, 3, 3, 3}; s2 = {3, 4, 5};

Complement[s1, s2]

{1, 2}

Mathematica does not currently offer a `SymmetricDifference` command, so for this you need to use the

union of the set differences.

s1 = {1, 1, 2, 3}; s2 = {3, 4, 5};

Union[Complement[s1, s2], Complement[s2, s1]]

{1, 2, 4, 5}

mathematica_intro.nb 49

Elements and Subsets

Mathematica (v.10) offers the `MemberQ` command to test elementhood and the `SubsetQ` command

to test inclusion. Note the perhaps surprising order of arguments: here we test if s2 ⊆ s1.

s1 = Range[10]; s2 = {1, 5};

MemberQ[s1, 5]

SubsetQ[s1, s2]

True

True

We can use `Map` to perform many tests at one go. (Note that object type matters for membership

tests.)

Map[x MemberQ[s1, x], {0, 1, 1.0}]

Map[x SubsetQ[s1, x], {{0}, {1}, {9.0}, {10}}]

{False, True, False}

{False, True, False, True}

Let’s build our own subset text, using the `MemberQ` command for testing elementhood. Working

directly with the definition of subset, we might use `Apply`, `And`, and `Map` to come up with the follow-

ing test of whether `set2` is a subset of `set1`. (See the documentation of `Apply`. Note that we match

the Mathematica argument order.)

ClearAll[set1, set2, subsetQ01]

subsetQ01 = Function[{set1, set2},

Apply[And, Map[x MemberQ[set1, x], set2]]

]

subsetQ01[Range[10], {1, 5}]

subsetQ01[{1, 5}, Range[10]]

Function[{set1, set2}, And @@ Function[x, MemberQ[set1, x]] /@ set2]

True

False

If you review the output of our function definition, note that it uses the `/@` shorthand notation for `Map`

and the `@@` shorthand notation for `Apply`.

Exercise: Describe the action of the following anonymous function. Assume the inputs are two lists.

And @@ x MemberQ[#1, x] /@ #2 &

And @@ Function[x, MemberQ[#1, x]] /@ #2 &

Our work so far provides a perfectly good solution. But rather than relying so directly on the definition of

subset, it turns out to be much faster to use an implication of the defintion. (It could be even faster if we

could be sure ahead of time that there are no duplicates in the proposed subset.)

50 mathematica_intro.nb

Clear[set1, set2, subsetQ]

(*

subsetQ[set1_List,set2_List]:=Module[{s2},

(* return bool, True if set2 is a subset of set1 *)

s2=DeleteDuplicates[set2];

Length[Intersection[set1,s2]]⩵Length[s2]

]

*)

subsetQ = {set1, set2}  Module[{s2 = DeleteDuplicates[set2]},

Length[Intersection[set1, s2]] ⩵ Length[s2]

]

Function[{set1, set2},

Module[{s2 = DeleteDuplicates[set2]}, Length[set1 ⋂ s2] ⩵ Length[s2]]]

We can use the `Timing` command to compare the computational speed of the two approaches.

s1 = Range[10000]; s2 = RandomSample[s1, 1000];

Timing[subsetQ01[s1, s2]]

Timing[subsetQ[s1, s2]]

{0.577204, True}

{0., True}

Set Building

Criterion-based filtering is a basic need in data manipulation. Use the `Select` command to construct

smaller sets from larger sets based on an inclusion criterion.

lst = Range[10]

Select[lst, EvenQ]

Select[lst, x 3 < x < 8]

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{2, 4, 6, 8, 10}

{4, 5, 6, 7}

For example, we might retrieve data from a lifetable, and be interested only in the data for children

under the age of 12.

data = ExampleData[{"Statistics", "USLifeTable2003"}];

data12 = Select[data, x x〚1〛 < 12];

mathematica_intro.nb 51

Permutations and Combinations

Permutations

Permutations[Range[3]] (* all permuations *)

Permutations[Range[5], {3}] (* all permutations of length 3 *)

{{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}}

{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 2}, {1, 3, 4}, {1, 3, 5}, {1, 4, 2}, {1, 4, 3},

{1, 4, 5}, {1, 5, 2}, {1, 5, 3}, {1, 5, 4}, {2, 1, 3}, {2, 1, 4}, {2, 1, 5}, {2, 3, 1},

{2, 3, 4}, {2, 3, 5}, {2, 4, 1}, {2, 4, 3}, {2, 4, 5}, {2, 5, 1}, {2, 5, 3}, {2, 5, 4},

{3, 1, 2}, {3, 1, 4}, {3, 1, 5}, {3, 2, 1}, {3, 2, 4}, {3, 2, 5}, {3, 4, 1}, {3, 4, 2},

{3, 4, 5}, {3, 5, 1}, {3, 5, 2}, {3, 5, 4}, {4, 1, 2}, {4, 1, 3}, {4, 1, 5},

{4, 2, 1}, {4, 2, 3}, {4, 2, 5}, {4, 3, 1}, {4, 3, 2}, {4, 3, 5}, {4, 5, 1},

{4, 5, 2}, {4, 5, 3}, {5, 1, 2}, {5, 1, 3}, {5, 1, 4}, {5, 2, 1}, {5, 2, 3},

{5, 2, 4}, {5, 3, 1}, {5, 3, 2}, {5, 3, 4}, {5, 4, 1}, {5, 4, 2}, {5, 4, 3}}

The Permutations command will use repeated elements, but they are treated as identical.

Permutations[{x, x, y}]

{{x, x, y}, {x, y, x}, {y, x, x}}

Combinations

We can use the Subsets command with a second argument of {k} (note the braces) to produce k-

subsets (combinations):

Subsets[{1, 2, 3}, {2}]

{{1, 2}, {1, 3}, {2, 3}}

Pascal’s Triangle

Exemplifying Stigler’s law of eponymy, the triangular arrangement of the binomial coefficients known as

Pascal’s triangle was developed by the 10th century Persian mathematician Al-Karaji.

52 mathematica_intro.nb

pascal = Table[Binomial[n, k], {n, 0, 10}, {k, 0, n}]

Grid[pascal, Alignment → Right]

{{1}, {1, 1}, {1, 2, 1}, {1, 3, 3, 1}, {1, 4, 6, 4, 1}, {1, 5, 10, 10, 5, 1},

{1, 6, 15, 20, 15, 6, 1}, {1, 7, 21, 35, 35, 21, 7, 1}, {1, 8, 28, 56, 70, 56, 28, 8, 1},

{1, 9, 36, 84, 126, 126, 84, 36, 9, 1}, {1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1}}

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

We can produced the same triangle with a bit better formatting.

maxitemsize = IntegerLength@Max@Last@pascal

Grid[pascal, Alignment → Right, ItemSize → maxitemsize - 1, Spacings → 0]

3

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

We can produced the same triangle with a more traditional formatting.

mathematica_intro.nb 53

pascalTri6[n_] := Module[{max, cellWd}, (*Maximum entry. Cell width.*)

max = Max[Table[Binomial[n, j], {j, 0, n}]];

cellWd = 0.25 * IntegerLength[max] + 2;

Column[Table[Grid[{Table[Binomial[i, j], {j, 0, i}]},

ItemSize → {cellWd, 2}, Alignment → Center], {i, 0, n}], Center]]

pascalTri6[

10]

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

Lists as Vectors
Mathematica lists support elementwise addition and scalar multiplication. Because of this, lists with N

numerical elements give us a natural computational representation of N-vectors.

Introduction to Vectors

In this booklet we will be mostly interested in real, finite-dimensional vectors.

Creating and Indexing Vectors

Any list of numbers can represent a vector, so all the tools we developed for creating lists are applicable

to creating vectors. Here are some two-dimensional examples. (We end each statement with a semi-

colon, which suppresses the output.)

v0 = {0, 0}; v1 = {1, 2}; v2 = {2, 1};

Notice how we can refer to each list with a single symbol. Notice that order matters: v1 and v2 represent

two different vectors.

Recall that Mathematica uses unit-based indexing: the first coordinate has an index of 1. Indexing uses

double brackets.

v1 = {1, 2}; v1〚1〛

1

54 mathematica_intro.nb

A vector is an element of a vector space. A vector space is essentially a set whose elements (vectors)

are closed under scalar multiplication and addition. In Mathematica, scalar multiplication and vector

addition work naturally.

2 * v1 (* double each element of v1 *)

v0 + v1 (* add corresponding element of v1 and v2 *)

2 * v1 + 3 * v2 (* linear combination of v1 and v2 *)

{2, 4}

{1, 2}

{8, 7}

Visual Representation of Vectors in 2-Space

In the Cartesian coordinate system, each coordinate represents a distance along a coordinate axis.

This leads to two standard graphical representations of 2-tuples and 3-tuples: as simple filled discs, or

as the end of an arrow whose tail is at the origin. The second representation is often used to indicate

that the tuples are vectors.

Two-dimensional real vectors have a familiar representation with standard Cartesian coordinates.

nopdf, noclass

{1, 1}

-4 -2 2 4

-4

-2

2

4

●

mathematica_intro.nb 55

Visual Representation of Vectors in 3-Space

noclass, nopdf

Illustration: Scalar Multiplication

Scalar multiplication literally scales the vector.

Clear[s, x1, x2]

s * {x1, x2}

{s x1, s x2}

We can easily visualize this in two dimensions:

56 mathematica_intro.nb

noclass, nopdf

s

{1, 1}
*

Illustration: Vector Addition

Clear[x1, x2, y1, y2]

{x1, x2} + {y1, y2}

{x1 + y1, x2 + y2}

Scalar addition can be represented as “completing a parallelogram”.

noclass, nopdf

Scalar Product

The scalar product, or dot product can be broken into two steps: elementwise multiplication, and summa-

mathematica_intro.nb 57

tion of elements.

Since Mathematica does not distinguish between lists and vectors, all list operations are available if you

wish to do non-standard vector manipulations. For example, you can perform element by element

muliplication simply by using the multiplcation operator (which is equivalent to the Times command). For

two conformable vectors, this produces the element-wise product (which is also called the Hadamard

product).

v1 = {1, 2}; v2 = {3, 4};

v3 = v1 * v2

{3, 8}

Some times we want to produce a scalar result by operating on a vector. For example, we may want the

sum of the elements. Mathematica provides the Total command for this.

v3 = {3, 8};

Total[v3]

11

Suppose we first do element-by-element multiplication of two vectors and then sum the elements of the

result: this produces what is known as the “scalar product” (or “dot product”) of our two vectors. The

scalar product of two vectors in ℝn is the result of multiplying the corresponding coordinates and sum-

ming those products.

v1 = {a, b}; v2 = {c, d};

Total[v1 * v2]

a c + b d

Since we have discussed how to use `Apply` and `Plus` to produce this total, we can also use `Apply` to

produce and ordinary dot product of vectors:

Apply[Plus, v1 * v2]

a c + b d

As a short-cut, there is also an infix operator for Apply: @@.

Plus @@ v1 * v2

a c + b d

The “dot product” is such a common need that Mathematica provides the Dot command to more simply

produce this result. As a convenient shorthand, Mathematica provides the period as an infix operator.

Dot[v1, v2]

% === v1.v2

a c + b d

True

Advanced: Inner Product

58 mathematica_intro.nb

For vectors in ℝn, the dot product is an inner product. An inner product of two vectors is often repre-

sented as < v1, v2 >. For real vectors, you can use Mathematica’s Inner command to produce the dot

product.

Clear[a, b, c, d]

Inner[Times, {a, b}, {c, d}, Plus]

a c + b d

An inner product maps two vectors to a number while meeting certain constraints, which we will discuss

in more detail latter. For vectors of real numbers one of these constraints is that

< v1, v2 > ⩵ < v2, v1 >. Note that Mathematica s’s Inner command does not enforce such constraints.

For example, let us replace Times with Power.

Clear[a, b, c, d]

Inner[Power, {a, b}, {c, d}, Plus]

Inner[Power, {c, d}, {a, b}, Plus]

ac + bd

ca + db

Linear Combination

A finite weighted sum of vectors is called a linear combination of the vectors. If the weights sum to

unity, it is also called an affine combination. An affine combination with nonnegative weights is called a

convex combination.

Examples

Here we create two 2-vectors and then scale them, purely symbolically.

Clear[s1, s2, v11, v12, v21, v22]

v1 = {v11, v12}; v2 = {v21, v22}

s1 * v1 + s2 * v2 (* linear combination of v1 and v2 *)

{v21, v22}

{s1 v11 + s2 v21, s1 v12 + s2 v22}

Here is a similar exercise, but using numbers instead of symbols.

v1 = {1, 2}; v2 = {3, 4}; v3 = {5, 6};

1 * v1 + 2 * v2 + 3 * v3 (* linear combination of v1, v2, and v3 *)

{22, 28}

Illustration: Linear Combination

In the following illustration, we produced a linear combination (i.e., weighted sum) of two vectors.

mathematica_intro.nb 59

noclass, nopdf

s1

s2

v1v2

Vector Space, Span, and Linear Independence

A vector space is a set of vectors that is closed under linear combination. This means that any linear

combination of vectors in the set produces another vector in the set.

Example

xmpl

Consider the following set of vectors: any vector x, along with all the vectors that can be formed from

it by scalar multiplication. If we add any two vectors from this set, we get another vector in this set.

Let V be a collection of vectors. The linear span of V is the set of all the vectors that can formed as

linear combinations of vectors in V. The span of a collection of vectors is clearly a vector space.

Any vector in the span of V is said to be linearly dependent on V. Any vector not in the span of V is said

to be linearly indepenendent of V.

Example

xmpl

Let V = {v1, v2} where v1 = (1, 2) and v2 = (2, 4). Then v3 = (7, 10) is linearly independent of V: we

cannot find a linear combination of v1 and v2 that is equal to v3. That is, we cannot find two scalars

(s1, s2) such that v3 = s1 v1 + s2 v2.

We can still ask Mathematica to try to find solutions when none exist, but we will get an empty set of

solutions. For example, let us attempt to use `Solve` on the following equation.

60 mathematica_intro.nb

Solve[s1 * {1, 2} + s2 * {2, 4} ⩵ {7, 10}, {s1, s2}]

{}

In contrast, v4 = (7, 14) is linearly dependent on V. For example, v4 = 3 v1 + 2 v2. Let us try to show this

using `Solve`.

Solve[s1 * {1, 2} + s2 * {2, 4} ⩵ {7, 14}, {s1, s2}]

Solve::svars : Equations may not give solutions for all "solve" variables. 

s2 →
7

2
-
s1

2


What happened? A collection of vectors V is said to be linearly independent if none of the vectors lies

in the span of the others. The problem is that V is itself linearly dependent, so there is not a unique

solution to this problem. Mathematica gave us an answer that represents all the solutions, including our

proposed solution (s1, s2) = (3, 2).

Here are some ways to test for linear independence.

Solve[s1 * {1, 2} + s2 * {3, 4} ⩵ {7, 10}, {s1, s2}]

(* 7,10 is in the span of 1,2 and 3,4 *)

{{s1 → 1, s2 → 2}}

Linear Equations

Null Space

The null space of a vector a is the set of vectors that are transformed to 0 by a: null(a) = {x a.x = 0}.

The Mathematica command `NullSpace` takes a matrix argument and returns a basis for the nullspace

of that matrix.

mA = Transpose[{{1, 2}, {3, 4}}]; (* put our vectors in the columns *)

nA = NullSpace[mA]

{}

v1 = {1, 2}; v2 = {3, 6};

mA = Transpose[{v1, v2}]; (* put our vectors in the columns *)

nA = NullSpace[mA]

{{-3, 1}}

This gives us weights for a linear combination of our vectors that equals the zero vector.

-3 * v1 + 1 * v2

{0, 0}

mA.Transpose[nA]

{{0}, {0}}

mathematica_intro.nb 61

Null Space

Suppose we want to characterize the null space of the vector (1,2). One approach is to use Solve to find

the equation of the null space:

Clear[x1, x2]

v1 = {1, 2};

Solve[v1.{x1, x2} ⩵ 0, {x1, x2}]

Solve::svars : Equations may not give solutions for all "solve" variables. 

x2 → -
x1

2


Another approach is to use Mathematica’s NullSpace command, which returns a basis for the null

space. However, this only works on matrices, so we would have to wrap the vector in a list:

NullSpace[{v1}]

{{-2, 1}}

m1 = {{1}, {2}}

m1 // MatrixForm

NullSpace[m1]

{{1}, {2}}


1
2


{}

62 mathematica_intro.nb

Illustrate Null Space: 2D

swf = Manipulate[ContourPlot[v.{x1, x2} ⩵ 0, {x1, -5, 5}, {x2, -5, 5},

PlotRange → {{-5, 5}, {-5, 5}},

ImageSize → {200, 200},

Axes → True, Ticks → False,

ContourStyle → Red,

Epilog → {

Arrow[{{0, 0}, v}],

{Red, Style[Text[Style[ToString[v]], v, {0, -Sign[v[[2]]]}], Larger]}

}

],

{{v, {1, 1}}, Locator, Appearance → "*"}

]

-4 -2 0 2 4

-4

-2

0

2

4

{1, 1}
*

mathematica_intro.nb 63

v = {1, 2}

ContourPlot[v.{x1, x2} ⩵ 5, {x1, -5, 5},

{x2, -5, 5}, Epilog → {Red, Arrow[{{0, 0}, v}]}]

{1, 2}

-4 -2 0 2 4

-4

-2

0

2

4

64 mathematica_intro.nb

Illustrate Nullspace: 3D

anim = Manipulate[

Show[{

ContourPlot3D[{v1, v2, v3}.{x1, x2, x3} ⩵ 0, {x1, -5, 5}, {x2, -5, 5}, {x3, -5, 5},

PlotRange → {{-5, 5}, {-5, 5}, {-5, 5}},

ImageSize → {200, 200},

Axes → True, Ticks → False,

ContourStyle → Red],

Graphics3D[Arrow[{{0, 0, 0}, {v1, v2, v3}}]]}

],

{{v1, 1}, -2, 2}, {{v2, 1}, -2, 2}, {{v3, 1}, -2, 2}

]

(* Export["c:\\temp\\temp.avi",anim,"ControlAppearance"→Automatic] *)

v1

v2

v3

mathematica_intro.nb 65

Affine Spaces: Illustrating Hyperplanes

Manipulate[ContourPlot[v.{x1, x2} ⩵ k, {x1, -5, 5}, {x2, -5, 5},

PlotRange → {{-5, 5}, {-5, 5}},

ImageSize → {200, 200},

Axes → True, Ticks → False,

ContourStyle → Red,

Epilog → {

Arrow[{{0, 0}, v}],

{Red, Style[Text[Style[ToString[v]], v, {0, -Sign[v[[2]]]}], Larger]}

}

],

{{k, 0}, -5, 5}, {{v, {1, 1}}, Locator, Appearance → "*"}

]

k

-4 -2 0 2 4

-4

-2

0

2

4

{1, 1}
*

Inequalities

RegionPlot[x + y ≤ 0, {x, -1, 1}, {y, -1, 1}, ImageSize → 200]

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

66 mathematica_intro.nb

Budget Constraints

Manipulate[RegionPlot[px * x + py * y ≤ w, {x, 0, 2}, {y, 0, 2}, ImageSize → 200],

{px, 1, 5}, {py, 1, 5}, {{w, 1}, 0, 2}]

px

py

w

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Linear Functions

Lines

Consider any two distinct points, p1 and p2. The line segment from p1 to p2 is the shortest path

between the two points, and the length of this path is the distance between the two points. This line

segment is the set of points that can be produced as convex combinations of p1 and p2. The line

through p1 and p2 is the set of points that can be produced as affine combinations of the two points.

That is, any point p on the line can be expressed as

p = (1 - t) p1 + t p2 = p1 + t (p2 - p1)

This is called the parametric form of the line. We will refer to the point (p2 - p1) as a “direction vector” for

the line. To illustrate this, suppose our two distinct points are in the Cartesian plane: p1 = (x1, y1) and

p2 = (x2, y2). Then we have

x = x1 + t (x2 - x1)

y = y1 + t (y2 - y1)

which implies

(y2 - y1) (x - x1) = (x2 - x1) (y - y1)

To see this, note that we can rewrite our system as

(y2 - y1) (x - x1) = (y2 - y1) (x2 - x1) t

mathematica_intro.nb 67

(x2 - x1) (y - y1) = (x2 - x1) (y2 - y1) t

This line is commonly represented by the equation

a x + b y + c = 0

where e.g. a = y2 - y1, b = x1 - x2, and c = y1 (x2 - x1) - x1(y2 - y1) = y1 x2 - x1 y2.

p1 = {x1, y1} = {2, 1}; p2 = {x2, y2} = {1, 2};

(* arbitrary coordinates for two points *)

a = y2 - y1; b = x1 - x2; (* define a and b *)

nopdf, noclass

(a,b)p2-p1 p1

p2

If x1 ≠ x2 we define the slope m of the line by

m =
y2 - y1

x2 - x1

Otherwise the slope is undefined. Two distinct lines in a plane are “parallel” if they do not intersect; the

minimum distance from one to the other is constant. Parallel lines have a common slope. Two parallel

lines cut the horizontal axis at the same angle, denoted by θ. The slope and the angle are related by

m = tan (θ)

θ = arctan (m)

m =
y2 - y1

x2 - x1
ArcTan[-1, 1]

-1

3 π

4

Two lines in a plane are “perpendicular” if their intersection creates common adjacent angles (i.e., right

angles). The product of their slopes is -1 (if defined). The dot product of their direction vectors is 0.

68 mathematica_intro.nb

Lists of Lists as Matrices
We create matrices as rectangular lists of lists.

Matrix Basics

Matrix Form

lst01 = {1, 2, 3}; lst02 = {2, 3, 4};

mA = {lst01, lst02}

{{1, 2, 3}, {2, 3, 4}}

These matrices can contain symbols as well as numbers.

Clear[a, b, c, d]

mB = {{a, b}, {c, d}}

{{a, b}, {c, d}}

 If you wish to see your matrix displayed in a more tranditional way, you can use the MatrixForm com-

mand. (Be careful, however, as the value returned by this command is not a matrix and will not respond

correctly to matrix operations.)

MatrixForm[mA]

MatrixForm[mB]


1 2 3
2 3 4




a b
c d



Creating Matrices by Hand

This section will focus on matrix creation and manipulation. Remember that Mathematica uses capital

letters for built-in commands, and some of these (C,D,E,I,K,N, and O) are single letter commands. So

although traditional textbook notation uses capital letters for matrices, this is a risky practice for Mathe-

matica input. By convention, user defined symbols begin with a lower-case letter.

Since a Mathematica matrix is just a rectangular list of lists, it is easy to create small matrices directly.

These matrices can contain symbols as well as numbers.

If you wish to see your matrix displayed in a more traditional way, you can use the MatrixForm com-

mand. (Be careful to use this just for display, however. The value returned by this command is a display

object, not a matrix, and may not respond correctly to matrix operations.)

mathematica_intro.nb 69

Clear[a, b, c, d]

mB = {{a, b}, {c, d}}

MatrixForm[mB]

{{a, b}, {c, d}}


a b
c d



Convenient Matrix Entry

You can enter expressions in a two-dimensional layout by using Ctrl+, to add columns and Ctrl+Enter to

add rows. By default, this produces a list of lists of placeholders. The placeholders allow for convenient

keyboard entry of matrix elements, since you can use Tab to move from placeholder to placeholder.

Another easy way to type matrices is to pick the Basic Math Assistant palette, scroll down to the first

typesetting tab, and click the matrix template. (Note that by default matrices display rounded brackets.)

This will give you a 2 by 2 matrix template. Again, use Ctrl+Enter to add a row; use Ctrl+, to add a

column. Here is a matrix created in this way:
1 2 3
4 5 6

.

If you are using the Basic Math Assistant, it is probably because you have forgotten the keyboard

shortcuts. Hover your mouse over the template in the Math Assistant to see the keyboard shortcuts for

matrix creation.

Indexing into Matrices

A matrix is just a rectangular list of lists. From a multidimensional list, we can extract a part of a part in

the obvious ways (e.g., sequential double brackets). But as a convenient shorthand, we can just use a

command separated list of indexes.

mA = Table10 * i - 1 + j, {i, 3}, {j, 5} (* create a list of lists *)

mA〚2〛〚2〛 (* access the 2,2 element *)

mA〚2, 2〛 (* shorthand access of the 2,2 element *)

{{1, 2, 3, 4, 5}, {11, 12, 13, 14, 15}, {21, 22, 23, 24, 25}}

12

12

One can even arbitrarily select from rows or, more suprisingly, columns.

70 mathematica_intro.nb

MatrixForm[mA]

mA〚All, 2〛 (* extract the second column *)

mA〚{1, 3}, 2〛 (* extract part of the second column *)

1 2 3 4 5
11 12 13 14 15
21 22 23 24 25

{2, 12, 22}

{2, 22}

Basic Vector Operations on Matrices

In Mathematica, a matrix is represented by a rectangular list of lists. The basic vector operations on

matrices are very natural: add and subtract matrices with the usual + and - operators, and do scalar

multiplication by premultiplying your matrix by any scalar.

Clear[mA, ones]; mA = {{1, 2}, {3, 4}}; ones = {{1, 1}, {1, 1}};

mA // MatrixForm

ones // MatrixForm


1 2
3 4




1 1
1 1



mA + ones // MatrixForm

mA - ones // MatrixForm

2 * ones // MatrixForm


2 3
4 5




0 1
2 3




2 2
2 2



This section will focus on matrix creation and manipulation. Remember that Mathematica uses capital

letters for built-in commands, and some of these (C,D,E,I,K,N, and O) are single letter commands. So

although traditional textbook notation uses capital letters for matrices, this is a risky practice for Mathe-

matica input. By convention, user defined symbols begin with a lower-case letter.

Matrix Multiplication

The syntax for matrix multiplication may be a bit of a surprise for new users. Mathematica allows use of

either a space or an asterisk to indicate element-by-element multiplication. Use a "dot" (i.e., a period or

full-stop) to do matrix multiplication. Below we add comments, using Mathematica’s parentheses-with-

asterisks comment notation, to emphasize this difference.

mathematica_intro.nb 71

mA = {{1, 2}, {3, 4}}; ones = {{1, 1}, {1, 1}};

mA * ones (* element-by-element multiplication (explicit Times) *)

mA ones (* element-by-element multiplication (implicit Times) *)

mA . ones (* matrix multiplication (explicit Dot) *)

{{1, 2}, {3, 4}}

{{1, 2}, {3, 4}}

{{3, 3}, {7, 7}}

The infix operators * and . provide a shorthand for the Mathematica commands Times and Dot. In fact,

Mathematica allows you to use these commands themselves as infix operators by surrounding them

with tildes.

mA = {{1, 2}, {3, 4}}; ones = {{1, 1}, {1, 1}};

Times[mA, ones] === mA ~Times~ ones (* element-by-element multiplication *)

Dot[mA, ones] === mA ~Dot~ ones (* matrix multiplication *)

True

True

Transpose, Inverse, and Identity

Transpose and Inverse are naturally named. Note that built-in Mathematica functions are capitalized,

and arguments to a Mathematica function must be placed in square brackets.

mA = {{a, b}, {c, d}}; mI = {{1, 0}, {0, 1}};

mI // MatrixForm

mA // MatrixForm

mI.mA // MatrixForm

mA.mI // MatrixForm


1 0
0 1




a b
c d




a b
c d




a b
c d



Map[IdentityMatrix, {1, 2, 3}]

Map[MatrixForm, %]

{{{1}}, {{1, 0}, {0, 1}}, {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}}

(1), 
1 0
0 1

,
1 0 0
0 1 0
0 0 1



72 mathematica_intro.nb

mA = {{1, 2}, {3, 4}};

mAt = Transpose[mA]

mAI = Inverse[mA]

%.mA

{{1, 3}, {2, 4}}

{-2, 1}, 
3

2
, -

1

2


{{1, 0}, {0, 1}}

A symmetric matrix equals its transpose. If we matrix-multiply a matrix and its transpose, the result is

symmetric.

mAAt = mAt.mA

mAAt ⩵ Transpose[mAAt]

{{10, 14}, {14, 20}}

True

An identity matrix is square, has ones on its diagonals, and all other elements are zero. Matrix-multiplica-

tion by an identity matrix has “no effect”, in the sense that A.I⩵ I.A⩵A. If we matrix-multiply a matrix A

by its inverse A-1 we produce an identity matrix.

mI = IdentityMatrix[2]

mA.mI ⩵ mI.mA ⩵ mA

mA.mAI ⩵ mI

{{1, 0}, {0, 1}}

True

True

i3 = IdentityMatrix[3]; i3 // MatrixForm

mB = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; mB // MatrixForm

i3.mB ⩵ mB

mB.i3 ⩵ mB

1 0 0
0 1 0
0 0 1

1 2 3
4 5 6
7 8 9

True

True

mathematica_intro.nb 73

Clear[a, b, c, d]

mA = {{a, b}, {c, d}}; mA // MatrixForm

Inverse[mA] // MatrixForm

mA.Inverse[mA] // Simplify // MatrixForm


a b
c d



d
-b c+a d

-
b

-b c+a d

-
c

-b c+a d
a

-b c+a d


1 0
0 1



mA = {{1, 2}, {3, 4}};

"mA"

mA // MatrixForm

"transpose"

Transpose[mA] // MatrixForm

Inverse[mA] // MatrixForm

Inverse[mA].mA // MatrixForm

mA


1 2
3 4



transpose


1 3
2 4



-2 1
3
2

-
1
2


1 0
0 1



Creating Useful Matrices

Built In Matrix Creation Facilities

Some useful matrix-creation functions include IndentityMatrix, DiagonalMatrix, and ConstantArray.

mI = IdentityMatrix[2];

mD = DiagonalMatrix[{1, 2, 3}];

mC = ConstantArray[1, {2, 3}];

MatrixForm /@ {mI, mD, mC}


1 0
0 1

,
1 0 0
0 2 0
0 0 3

, 
1 1 1
1 1 1



Useful commands for matrix creation include RandomInteger and RandomReal. You can use the

Dimensions command to retrieve the shape of your matrix. You can find the smallest and largest ele-

74 mathematica_intro.nb

ments with Min and Max.

mRI = RandomInteger[100, {1000, 20}];

Dimensions[mRI]

{Min[mRI], Max[mRI]}

{1000, 20}

{0, 100}

The Table and Array commands are the basic list creation commands: Table takes an expression as

input, and Array takes a function as input. Since a matrix is a just a list of lists, we can flexibly create

matrices using Table. To create a matrix with the Table command, input an expression in two variables

and iterators for those variables. For example, to create a 3 by 5 matrix of zeros we can do the following.

Table[0, {3}, {5}] // MatrixForm

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Here is the use of Array to accomplish the same thing:

Array[Function[{i, j}, 0], {3, 5}] // MatrixForm

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

More generally, we can index our iterators and produce any function of the indexes as matrix entries.

m3by5 = Tablei - 1 * 5 + j, {i, 3}, {j, 5} ;

m3by5 // MatrixForm

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

Here we create the same matrix using Array.

m3by5 == Array#1 - 1 * 5 + #2 &, {3, 5}

True

Indexing matrices is a little verbose in Mathematica: we must double our brackets to do indexing.

m3by5[[3]][[5]]

15

Array[a## &, {2, 2}]

Table[ai,j, {i, 2}, {j, 2}]

{{a1,1, a1,2}, {a2,1, a2,2}}

{{a1,1, a1,2}, {a2,1, a2,2}}

Stacking Matrices

Matrices can be stacked by making a “matrix of matrices” and then using the ArrayFlatten command. (If

mathematica_intro.nb 75

the dimensions are unambiguous, you can use a constant to represent a constant matrix.)

mA = DiagonalMatrix[{1, 2}]; mB = DiagonalMatrix[{3, 4}];

ArrayFlatten[{{mA, mB}}] // MatrixForm

ArrayFlatten[{{mA}, {mB}}] // MatrixForm

ArrayFlatten[{{mA, a}, {0, mB}}] // MatrixForm


1 0 3 0
0 2 0 4



1 0
0 2
3 0
0 4

1 0 a a
0 2 a a
0 0 3 0
0 0 0 4

Reshaping Matrices

mA = {Range[30]}; (* 1 by 30 matrix *)

mB = Partition[Flatten[mA], 10]; (* 3 by 10 matrix *)

mB // MatrixForm

Dimensions[mB]

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30

{3, 10}

Creating Matrices

Some useful matrix-creation functions include IndentityMatrix, DiagonalMatrix, and ConstantArray.

mI = IdentityMatrix[2];

mD = DiagonalMatrix[{1, 2, 3}];

mC = ConstantArray[1, {2, 3}];

MatrixForm /@ {mI, mD, mC}


1 0
0 1

,
1 0 0
0 2 0
0 0 3

, 
1 1 1
1 1 1



Useful commands for matrix creation include RandomInteger and RandomReal. You can use the

Dimensions command to retrieve the shape of your matrix. You can find the smallest and largest ele-

ments with Min and Max.

76 mathematica_intro.nb

mRI = RandomInteger[100, {1000, 20}];

Dimensions[mRI]

{Min[mR], Max[mRI]}

{1000, 20}

{mR, 100}

The Table and Array commands are the basic list creation commands: Table takes an expression as

input, and Array takes a function as input. Since a matrix is a just a list of lists, we can flexibly create

matrices using Table. To create a matrix with the Table command, input an expression in two variables

and iterators for those variables. For example, to create a 3 by 5 matrix of zeros we can do the following.

Table[0, {3}, {5}] // MatrixForm

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Here is the use of Array to accomplish the same thing:

Array[Function[{i, j}, 0], {3, 5}] // MatrixForm

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

More generally, we can index our iterators and produce any function of the indexes as matrix entries.

m3by5 = Tablei - 1 * 5 + j, {i, 3}, {j, 5} ;

m3by5 // MatrixForm

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

Here we create the same matrix using Array.

m3by5 == Array#1 - 1 * 5 + #2 &, {3, 5}

True

Indexing matrices is a little verbose in Mathematica: we must double our brackets to do indexing.

m3by5[[3]][[5]]

15

Array[a## &, {2, 2}]

Table[ai,j, {i, 2}, {j, 2}]

{{a1,1, a1,2}, {a2,1, a2,2}}

{{a1,1, a1,2}, {a2,1, a2,2}}

Reshaping Matrices

You can use the `Flatten` and `Partition` commands to reshape matrices.

mathematica_intro.nb 77

mA = {Range[30]}; (* 1 by 30 matrix *)

mB = Partition[Flatten[mA], 10]; (* 3 by 10 matrix *)

mB // MatrixForm

Dimensions[mB]

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30

{3, 10}

Stacking Matrices

Matrices can be stacked by making a “matrix of matrices” and then using the ArrayFlatten command.

mA = DiagonalMatrix[{1, 2}]; mB = DiagonalMatrix[{3, 4}];

ArrayFlatten[{{mA, mB}}] // MatrixForm

ArrayFlatten[{{mA}, {mB}}] // MatrixForm


1 0 3 0
0 2 0 4



1 0
0 2
3 0
0 4

 If the dimensions are unambiguous, you can conveniently use a constant to represent a constant

matrix.

mD = ArrayFlatten[{{mA, a}, {0, mB}}]

% // MatrixForm

{{1, 0, a, a}, {0, 2, a, a}, {0, 0, 3, 0}, {0, 0, 0, 4}}

1 0 a a
0 2 a a
0 0 3 0
0 0 0 4

Unstacking Matrices

Stacks of square matrices can be unstacked using `Partition`.

78 mathematica_intro.nb

mD = {{1, 0, a, a}, {0, 2, a, a}, {0, 0, 3, 0}, {0, 0, 0, 4}};

% // MatrixForm

mDu = Partition[mD, {2, 2}];

% // MatrixForm

mDu〚1, 1〛 // MatrixForm

1 0 a a
0 2 a a
0 0 3 0
0 0 0 4


1 0
0 2

 
a a
a a




0 0
0 0

 
3 0
0 4




1 0
0 2



More complex unstacking can be handled by `PartitionRagged`.

? Internal`PartitionRagged
Info-4e55ad81-9cfa-46ee-9b60-b0f220c96db9

PartitionRagged[list, {n1,...,nk}] partitions list into ragged array with rows of

length n1, ..., nk. PartitionRagged[array, {{n11,...,},...,{nm1,...}}] partitions

depth m array along each dimension.

mDu2 = Internal`PartitionRagged[mD, {{3, 1}, {3, 1}}]

MatrixForm@Map[MatrixForm, mDu2, {2}]

mDu2[[1, 1]] // MatrixForm

{{{{1, 0, a}, {0, 2, a}, {0, 0, 3}}, {{a}, {a}, {0}}}, {{{0, 0, 0}}, {{4}}}}

1 0 a
0 2 a
0 0 3

a
a
0

(0 0 0) (4)

1 0 a
0 2 a
0 0 3

Linear Transformations in Two Dimensions

A 2 by 2 matrix can represent a tranformation or a point (x, y) in the Cartesian plane to another such

point (x ', y ').

General Linear Transformation ℝ2 → ℝ2

The following represents a general linear transformation of 2-vectors to 2-vectors.

mathematica_intro.nb 79

noclass, nopdf

Dot::rect : Nonrectangular tensor encountered. 

noclass, nopdf


64 1
6 {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09}


x
y
 =

{{64, 1}, {6, {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09}}}.{{x}, {y}}

Note that the zero vector always maps to the zero vector. We are going to visualize some special

tranformations by looking at transformations of the points of the unit square. The unit square has

corners at the following points: (0, 0), (1, 0), (1, 1), and (0, 1). Let us create a 2 by 4 matrix, where each

column represents one of those corners, and then plot those four points.

noclass, nopdf

The resulting matrix is
0 1 1 0
0 0 1 1

, and we can plot the four points as follows.

noclass, nopdf

●● ■■

◆◆▲▲

We can premultiply this representation of the unit square by any 2 by 2 matrix, and each column of the

result represents a transformed point.

noclass, nopdf


64 1
6 {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09}


0 1 1 0
0 0 1 1

=

{{64, 1}, {6, {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09}}}.sqrpts

The first column of the result is of course the zero vector. The next is the first column of our transfora-

tion matrix. Then comes the sum of the two columns of our transformation matrix. And last, we find the

second column of our transformation matrix.

Scale Transformations

Scale transformations uniformly scale all first coordinates and uniformly scale all second coordinates.

Any diagonal matrix can be interpreted in terms of such scale transormations. The entries along the

diagonal are called the scaling factors.

80 mathematica_intro.nb

noclass, nopdf

{{sx, 0}, {0, sy}}

noclass, nopdf

Let
sx 0
0 sy

 be our two-dimensional scale-transformation matrix.

noclass, nopdf


sx 0
0 sy


x
y
=

x sx
y sy



noclass, nopdf


sx 0
0 sy


0 1 1 0
0 0 1 1

=
0 sx sx 0
0 0 sy sy



Examples of Scale Transformations

nopdf, noclass

The matrix
1.5 0
0 1

 will scale the horizontal values by 150%:

nopdf, noclass

●● ■■

◆◆▲▲

maps to ●● ■■

◆◆▲▲

nopdf, noclass

The matrix
1 0
0 1.5

 will scale the vertical values by 150%:

nopdf, noclass

●● ■■

◆◆▲▲

maps to ●● ■■

◆◆▲▲

nopdf, noclass

The matrix
1.5 0
0 1.5

 will scale the horizontal and vertical values by 150%:

mathematica_intro.nb 81

nopdf, noclass

●● ■■

◆◆▲▲

maps to ●● ■■

◆◆▲▲

nopdf, noclass

The matrix
-1 0
0 1

 will scale the horizontal values by -100%:

nopdf, noclass

●● ■■

◆◆▲▲

maps to ●●■■

◆◆ ▲▲

nopdf, noclass

The matrix
1 0
0 -1

 will scale the vertical values by -100%:

nopdf, noclass

●● ■■

◆◆▲▲

maps to ●● ■■

◆◆▲▲

nopdf, noclass

The matrix
-1 0
0 -1

 will scale the horizontal and vertical values by -100%:

82 mathematica_intro.nb

nopdf, noclass

●● ■■

◆◆▲▲

maps to ●●■■

◆◆ ▲▲

Shear Transformations

A shear transformation in any direction proportionally displaces each point in that (signed) direction.

Create a matrix for shearing as follows.

ClearAll[a, b, α, β]

mT = {{1, α}, {β, 1}};

MatrixForm[mT]


1 α

β 1


Here α determines the horizontal shearing, and β determines the vertical shearing.

noclass, nopdf


1 α

β 1


x
y
 = 

a + b α
b + a β



Map[MatrixForm, {mT, sqrpts}]

shear = mT.sqrpts; MatrixForm[shear]

"horizontal shear transformation",

mT /. {β → 0} // MatrixForm, shear /. {β → 0} // MatrixForm

{"vertical shear transformation", mT /. {α → 0} // MatrixForm,

shear /. {α → 0} // MatrixForm}


1 α

β 1
, sqrpts

{{1, α}, {β, 1}}.sqrpts

horizontal shear transformation, 
1 α

0 1
, {{1, α}, {0, 1}}.sqrpts

vertical shear transformation, 
1 0
β 1

, {{1, 0}, {β, 1}}.sqrpts

Examples of Shear Transformations

mathematica_intro.nb 83

nopdf, noclass

The matrix
1 0.5
0 1

 produces a horizontal shear to the right:

nopdf, noclass

●● ■■

◆◆▲▲

maps to ●● ■■

◆◆▲▲

nopdf, noclass

The matrix
1 -0.5
0 1

 produces a horizontal shear to the left:

nopdf, noclass

●● ■■

◆◆▲▲

maps to ●● ■■

◆◆▲▲

nopdf, noclass

The matrix
1 0

0.5 1
 produces a vertical shear upwards:

nopdf, noclass

●● ■■

◆◆▲▲

maps to ●●

■■

◆◆

▲▲

nopdf, noclass

The matrix
1 0

-0.5 1
 produces a vertical shear downwards:

84 mathematica_intro.nb

nopdf, noclass

●● ■■

◆◆▲▲

maps to ●●

■■

◆◆

▲▲

Rotation Transformations

Suppose we want to map points in ℝ2 to points rotated counter-clockwise by ninety degrees. We could

do this by swapping the x and y coordinates and after changing the sign of the y coordinate. So the

point (a, b) rotates to the point (-b, a). For example, (1, 2) would become (-2, 1). Note that the dot

product of a point with its rotated point is 0. This is also true of any scalar multiple of the point with any

scalar multiple of its rotation. So when two vectors are orthogonal, they have a dot product of 0.

Clear[θ]

{{Cos[θ], -Sin[θ]}, {Sin[θ], Cos[θ]}} // MatrixForm


Cos[θ] -Sin[θ]
Sin[θ] Cos[θ]



rotate2d = Function[{pt2d, θ}, {{Cos[θ], -Sin[θ]}, {Sin[θ], Cos[θ]}}.pt2d]

pt1 = {0, 1};

pt2 = rotate2dpt1, Pi  2

pt1.pt2

Function[{pt2d, θ}, {{Cos[θ], -Sin[θ]}, {Sin[θ], Cos[θ]}}.pt2d]

{-1, 0}

0

mathematica_intro.nb 85

ClearAll[α, β]

mT = {{Cos[θ], -Sin[θ]}, {Sin[θ], Cos[θ]}};

mT // MatrixForm

"rotation transformation"

mT.sqrpts

% // MatrixForm


Cos[θ] -Sin[θ]
Sin[θ] Cos[θ]



rotation transformation

{{Cos[θ], -Sin[θ]}, {Sin[θ], Cos[θ]}}.sqrpts

{{Cos[θ], -Sin[θ]}, {Sin[θ], Cos[θ]}}.sqrpts

86 mathematica_intro.nb

The matrix

3
2

-
1
2

1
2

3
2

 produces a 30 degree counterclockwise rotation:

●● ■■

◆◆▲▲

maps to ●●

■■

◆◆

▲▲

The matrix
0 -1
1 0

 produces a 90 degree counterclockwise rotation:

●● ■■

◆◆▲▲

maps to ●●

■■◆◆

▲▲

The matrix
-1 0
0 -1

 produces a 180 degree counterclockwise rotation:

●● ■■

◆◆▲▲

maps to ●●■■

◆◆ ▲▲

mathematica_intro.nb 87

Miscellaneous

Trace and Determinant

Unusually for Mathematica, the trace and determinant operations have truncated names. (Moreover,

Mathematica’s Trace command has nothing to do with matrices.)

Det[mA] (* matrix determinant *)

Tr[mA] (* matrix trace *)

-b c + a d

a + d

Linear Independence (redux)

A set of vectors V is said to be linearly independent if none of the vectors lies in the span of the others.

Here are some ways to test for linear independence.

Clear[v1, v2, v3]

v1 = {1, 2, 3}; v2 = {4, 5, 6}; v3 = {7, 8, 9};

mM = Transpose[{v1, v2, v3}];

NullSpace[mM]

Det[mM]

{{1, -2, 1}}

0

Suppose V is a finite set of N-vectors. We want to determine whether a vector b is in the span of V.

Create a matrix M with columns that are the vectors in V, and ask whether the equation M.x = b has a

solution.

Clear[v1, v2, v3, mM, b]

v1 = {1, 2, 3}; v2 = {4, 5, 6}; v3 = {7, 8, 9}; b = {10, 11, 12};

mM = Transpose[{v1, v2, v3}];

LinearSolve[mM, b]

{-2, 3, 0}

Note that LinearSolve only returns a single solution, not a description of all the possible solutions. For

that, you need to use Solve:

Clear[v1, v2, v3, mM, b]

v1 = {1, 2, 3}; v2 = {4, 5, 6}; v3 = {7, 8, 9}; b = {10, 11, 12};

mM = Transpose[{v1, v2, v3}];

Solve[mM.{x1, x2, x3} == b, {x1, x2, x3}]

Solve::ivar : 2 is not a valid variable. 

Solve[{6 + 7 x3, 9 + 8 x3, 12 + 9 x3} ⩵ {10, 11, 12}, {2, 1, x3}]

88 mathematica_intro.nb

NullSpace[mM]

{{1, -2, 1}}

mM.%

Dot::dotsh : Tensors {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}} and {{1, -2, 1}} have incompatible shapes. 

{{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}.{{1, -2, 1}}

Matrix-Oriented Methods of Testing for Linear Dependence

Clear[v1, v2, v3]

v1 = {1, 2, 3}; v2 = {4, 5, 6}; v3 = {7, 8, 9};

mM = Transpose[{v1, v2, v3}];

NullSpace[mM]

Det[mM]

{{1, -2, 1}}

0

Suppose V is a finite set of N-vectors. We want to determine whether a vector b is in the span of V.

Create a matrix M with columns that are the vectors in V, and ask whether the equation M.x = b has a

solution.

Clear[v1, v2, v3, mM, b]

v1 = {1, 2, 3}; v2 = {4, 5, 6}; v3 = {7, 8, 9}; b = {10, 11, 12};

mM = Transpose[{v1, v2, v3}];

LinearSolve[mM, b]

{-2, 3, 0}

Note that LinearSolve only returns a single solution, not a description of all the possible solutions. For

that, you need to use Solve:

Clear[v1, v2, v3, mM, b]

v1 = {1, 2, 3}; v2 = {4, 5, 6}; v3 = {7, 8, 9}; b = {10, 11, 12};

mM = Transpose[{v1, v2, v3}];

Solve[mM.{x1, x2, x3} == b, {x1, x2, x3}]

Solve::ivar : 2 is not a valid variable. 

Solve[{6 + 7 x3, 9 + 8 x3, 12 + 9 x3} ⩵ {10, 11, 12}, {2, 1, x3}]

NullSpace[mM]

{{1, -2, 1}}

mM.%

Dot::dotsh : Tensors {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}} and {{1, -2, 1}} have incompatible shapes. 

{{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}.{{1, -2, 1}}

mathematica_intro.nb 89

Prefix and Postfix Notation

Most of the time we will use the familiar prefix notation for Mathematica functions, as above. But at

times it can be convenient to use an alternative prefix or postfix notation.

mA = {{1, 2}, {3, 4}};

mA // Transpose

mA // Inverse

Transpose@mA

Inverse@mA

{{1, 3}, {2, 4}}

{-2, 1}, 
3

2
, -

1

2


{{1, 3}, {2, 4}}

{-2, 1}, 
3

2
, -

1

2


The main convenience from the postfix notation comes in readability when a sequence of operations is

chained.

mA = {{1, 2}, {3, 4}};

(mA // Inverse // Transpose) === (mA // Transpose // Inverse)

True

Eigenvalues and Eigenvectors

Given a matrix A, and eigenvalue is a scalar λ such that the matrix (A - λI) is singular. We can find such

a scalar by solving the characteristic equation A - λI = 0. For example, consider the matrix

A = 
4 -1
-3 2

 ⇒ A - λI = 
4 - λ -1
-3 2 - λ



The characteristic polynomial is A - λI , which is λ2 - 6 λ + 5. This is just an ordinary polynomial in λ.

the characteristic equation λ2 - 6 λ + 5 = 0. Applying the quadratic equation, we get solutions

λ1, λ2 = 1, 5. We can use Mathematica to implement exactly these steps.

Clear[λ]

mA = {{4, -1}, {-3, 2}}

mL = mA - λ * IdentityMatrix[2]

charpoly = Det[mL]

soln = Solve[charpoly == 0, λ]

{{4, -1}, {-3, 2}}

{{4 - λ, -1}, {-3, 2 - λ}}

5 - 6 λ + λ2

{{λ → 1}, {λ → 5}}

90 mathematica_intro.nb

Mathematica also offers some special commands that allow us to proceed more concisely. Read the

documentation for `CharacteristicPolynomial` and `Eigenvalues`.

CharacteristicPolynomial[mA, λ]

Eigenvalues[mA]

5 - 6 λ + λ2

{5, 1}

With each eigenvalue λ of a matrix A, we can associate an eigenvector v, such that

Av = λv

In other words, premultiplying A times one of its eigenvectors produces the same outcome as scaling

that vector by the associated eigenvalue. Clearly if v is an eigenvector, so is any nonzero scalar multiple

of v. Eigenvectors are not unique.

Clear[x1, x2]

mL1 = mL /. soln[[1]]; mL2 = mL /. soln[[2]];

Solve[mL1.{{x1}, {x2}} ⩵ 0, {x1, x2}]

Solve::svars : Equations may not give solutions for all "solve" variables. 

{{x2 → 3 x1}}

Solve[mL1.{{x1}, {x2}} ⩵ 0, {x1, x2}] /. {x1 → 1}

Solve[mL2.{{x1}, {x2}} ⩵ 0, {x1, x2}] /. {x1 → 1}

Solve::svars : Equations may not give solutions for all "solve" variables. 

{{x2 → 3}}

Solve::svars : Equations may not give solutions for all "solve" variables. 

{{x2 → -1}}

Once again, Mathematica offers some specialized commands for exploring eigensystems. The

`Eigenvectors` command produces eigenvectors (naturally enough), while the `Eigensystem` command

returns both the eigenvalues and associated eigenvectors.

mathematica_intro.nb 91

Clear[λ]

mB = 2 * {{1, 0, 2}, {0, 5, 0}, {3, 0, 2}};

mB // MatrixForm

cpB = CharacteristicPolynomial[mB, λ]

m1 = mB + 2 * IdentityMatrix[3]

m1 // MatrixForm

Solve[m1.{x1, x2, x3} ⩵ 0, {x1, x2, x3}]

Factor[cpB]

Eigensystem[mB]

evec = {{1}, {0}, {-1}}

mB.evec ⩵ -1 * evec

2 0 4
0 10 0
6 0 4

-160 - 44 λ + 16 λ2 - λ3

{{4, 0, 4}, {0, 12, 0}, {6, 0, 6}}

4 0 4
0 12 0
6 0 6

Solve::svars : Equations may not give solutions for all "solve" variables. 

{{x2 → 0, x3 → -x1}}

-(-10 + λ) (-8 + λ) (2 + λ)

{{10, 8, -2}, {{0, 1, 0}, {2, 0, 3}, {-1, 0, 1}}}

{{1}, {0}, {-1}}

False

Eigenvectors[mA]

Eigensystem[mA]

{{-1, 1}, {1, 3}}

{{5, 1}, {{-1, 1}, {1, 3}}}

mP = {{1, 1}, {3, -1}}

Inverse[mP].mA.mP

{{1, 1}, {3, -1}}

{{1, 0}, {0, 5}}

Linear Comparative Statics

Equations

92 mathematica_intro.nb

Here is a very simple “IS-LM” description of goods and money market equilibrium in the macroeconomy.

y = g - β r

m - p = μ1 y - μ2 (r + π)
(1)

Here r is the real interest rate, y is (the log of) real income, m - p is the log of the real money supply, π

is the expected rate of inflation, and g is a fiscal stance variable.

In Mathematica, we need to distinguish different uses of equals signs: use a single equals sign for

assignment (Set) and two to create an equation (Equal). We can create an equation and assign it to a

name.

Clear[y, g, r, m, p, Π]

iseq = y ⩵ g - β * r;

lmeq = m - p ⩵ μ1 * y - μ2 * (r + Π);

Later, we can use these names to refer to our equations.

iseq

lmeq

y ⩵ g - r β

m - p ⩵ y μ1 - μ2 (r + Π)

Note that your symbols may be re-ordered when output.

“Keynesian” Model

We turn these equations into a “Keynesian” model by designating r and y to be the endogenous vari-

ables. Once we have a specification of the endogenous variables for a system of equations, we can

attempt to solve it. A “solution” of the model will express r and y as functions of the exogenous variables

(m, g, and π) and the structural parameters. Such a solution is also called a “reduced form”.

Use of the Solve Command

soln01K = Solve[iseq && lmeq, {y, r}]

y → -
-m β + p β - g μ2 - β μ2 Π

β μ1 + μ2
, r → -

m - p - g μ1 + μ2 Π

β μ1 + μ2


Mathematica represents a solution as a collection of rules. Note that it is a list of lists of solutions, since

some systems handled by Solve may have multiple solutions. Get the first solution by indexing this list.

(Mathematica indexes with double brackets and uses unit-based indexing.)

soln01K = soln01K〚1〛

y → -
-m β + p β - g μ2 - β μ2 Π

β μ1 + μ2
, r → -

m - p - g μ1 + μ2 Π

β μ1 + μ2


A Matrix Algebra Approach

mathematica_intro.nb 93

Next we use a more explicit solution procedure, which can be very helpful in understanding what is

going on. Gather the endogenous variables on the left hand side of the equations. Also, we make

explicit the implicit coefficient of unity on y.

First recall our IS and LM equations.

iseq

lmeq

y ⩵ g - r β

m - p ⩵ y μ1 - μ2 (r + Π)

1 y +β r  g

μ1 y -μ2 rm - p + μ2 π
(2)

We are going to introduce a useful shorthand for writing this system of equations. Write these two

equations as

 1 β  
 y

 r
  [g]

 μ1 -μ2 
 y

 r
  [m-p+μ2 π]

(3)

Now “stack” these two equations to set up a matrix equation in the form J x  b:


 1 β

 μ1 -μ2
 

 y

 r
  

 g

 m-p+μ2 π
 (4)

The 2⨯2 coefficient matrix that premultiplies the endogenous variables is known as the Jacobian

matrix. Note how each row of the Jacobian matrix contains parameters from a single equation.

mJ = {{1, β}, {μ1, -μ2}}; (* Jacobian matrix *)

mJ // MatrixForm (* Display mJ in matrix form *)


1 β

μ1 -μ2


Suppose that the Jacobian matrix has a “multiplicative inverse”. In this case it does:

Inverse[mJ] // Simplify // MatrixForm
μ2

β μ1+μ2
β

β μ1+μ2

μ1
β μ1+μ2

-
1

β μ1+μ2

If we multiply both sides of this equation by the inverse of the Jacobian matrix, we produce the solution

or “reduced form” of the model. Recall our exogenous vector is

94 mathematica_intro.nb

b = {{g}, {m - p + μ2 * Π}};

b // MatrixForm


g

m - p + μ2 Π


So produce your solution for y and r by premultiplying the exogenous vector by the inverse of the

coefficient matrix:

soln02K = Inverse[mJ].b;

soln02K // FullSimplify // MatrixForm

g μ2+β (m-p+μ2 Π)
β μ1+μ2

-m+p+g μ1-μ2 Π
β μ1+μ2

In more detail:


 y

 r
 

-1

μ2 + β μ1


 -μ2 -β

 -μ1 1
 

 g

 m + μ2 π
 =

g μ2+β(m-p+ μ2 Π)

μ2+β μ1

-
m-p-g μ1+μ2 Π

μ2+β μ1

(5)

This is nice and explicit. Computationally, however, we often do not want to use an explicit inverse.

Instead we can use `LinearSolve` or `Solve`.

Using LinearSolve (or Solve)

soln03K = LinearSolve[mJ, b] // MatrixForm

m β-p β+g μ2+β μ2 Π
β μ1+μ2

-m+p+g μ1-μ2 Π
β μ1+μ2

soln04K = Solve[mJ.{{y}, {r}} ⩵ b, {y, r}]〚1〛

y → -
-m β + p β - g μ2 - β μ2 Π

β μ1 + μ2
, r → -

m - p - g μ1 + μ2 Π

β μ1 + μ2


Note that we run into problems if we try to treat a column vector as a variable.

Clear[x]

x = {{y}, {r}};

Solve[mJ.x ⩵ b, x]

Solve::ivar : {y} is not a valid variable. 

Solve[{{y + r β}, {y μ1 - r μ2}} ⩵ {{g}, {m - p + μ2 Π}}, {{y}, {r}}]

However, because Dot supports dimension reduction, we can do something very similar.

mathematica_intro.nb 95

Using Dot across Differing Dimensions

mJ = {{1, β}, {μ1, -μ2}}; (* two dimensional *)

x = {y, r}; (* one dimensional *)

b = {g, m - p + μ2 * Π}; (* one dimensional *)

soln05K = Solve[mJ.x ⩵ b, x]〚1〛

y → -
-m β + p β - g μ2 - β μ2 Π

β μ1 + μ2
, r → -

m - p - g μ1 + μ2 Π

β μ1 + μ2


Comparative Statics

Once we have our reduced form, we are ready to look at the comparative statics of the model. We will

use the partial derivative command (D) and the ReplaceAll command (/.).

Let us begin by looking at the response of the solutions to a change in g.

D[y /. soln05K, g]

D[r /. soln05K, g]

D[{y, r} /. soln05K, g]

μ2

β μ1 + μ2

μ1

β μ1 + μ2


μ2

β μ1 + μ2
,

μ1

β μ1 + μ2


cs01K = D[{y, r} /. soln05K, {{m, p, Π, g}}]


β

β μ1 + μ2
, -

β

β μ1 + μ2
,

β μ2

β μ1 + μ2
,

μ2

β μ1 + μ2
, -

1

β μ1 + μ2
,

1

β μ1 + μ2
, -

μ2

β μ1 + μ2
,

μ1

β μ1 + μ2


This can be easier to look at in a table.

TableForm[cs01K, TableHeadings → {{"y", "r"}, {"m", "p", "Π", "g"}}]

m p Π g

y β

β μ1+μ2
-

β

β μ1+μ2
β μ2

β μ1+μ2
μ2

β μ1+μ2

r -
1

β μ1+μ2
1

β μ1+μ2
-

μ2
β μ1+μ2

μ1
β μ1+μ2

96 mathematica_intro.nb

Signing the Comparative Statics

cs01Ksigns = Assuming[β > 0 && μ1 > 0 && μ2 > 0,

Simplify[Sign[cs01K]]

]

TableForm[cs01Ksigns /. {-1 → "-", 1 → "+"},

TableHeadings → {{"y", "r"}, {"m", "p", "Π", "g"}}]

{{1, -1, 1, 1}, {-1, 1, -1, 1}}

m p Π g
y + - + +

r - + - +

“Classical” Model

Here is another example of comparative statics experiments in a simple linear model. We work with the

same structural equations, but we produce a stylized “Classical” model by specifying that m and i are

endogenous.

Solution using Solve

Let us recall our “structural” equations:

iseq

lmeq

y ⩵ g - r β

m - p ⩵ y μ1 - μ2 (r + Π)

Naturally we can simply solve the same equations for the new endogenous variables.

soln01C = Solve[iseq && lmeq, {p, r}]〚1〛

p → -
-m β + y β μ1 - g μ2 + y μ2 - β μ2 Π

β
, r → -

-g + y

β


More Explicit Solution (using Matrix Algebra)

But let us again be a bit more explicit. In preparation, let us gather the endogenous variables on the left

hand side of the equations.

β r  g -y

μ2 r - p -m +μ1 y-μ2 π
(6)

Note the recursive structure of the model: to solve for the interest rate, we only need the first equation.

We can then plug this solution for i into the second equation to solve for m.

Let us make this yet more explicit by including coefficient of 0 or 1 where appropriate:

mathematica_intro.nb 97

 β r + 0 · p g-y

 μ2 r -1 · p -m+ μ1 y - μ2 π
(7)

Now set up the matrix equation in the form J x  b:


 β 0

 μ2 -1
 

 r

 p
  

 g -y

 -m + μ1 y - μ2 π
 (8)

Now the coefficient matrix is

cJ = {{β, 0}, {μ2, -1}}; cJ // MatrixForm


β 0
μ2 -1



The inverse is

Inverse[cJ] // MatrixForm
1
β

0
μ2
β

-1

Once again, we can multiply both sides of this equation by the inverse of the Jacobian matrix to produce

the reduced form of the model.


 r

 p
 

1

β


 1 0

 μ2 -β
 

 g -y

 -m+μ1 y - μ2 π
 (9)

Clear[g]

Inverse[cJ].{{g - y}, {-m + μ1 y - μ2 Π}} // MatrixForm
g-y
β

m - y μ1 +
(g-y) μ2

β
+ μ2 Π

Solution using LinearSolve

solnC02 = LinearSolve[cJ, {g - y, -m + μ1 * y - μ2 * Π}] // Expand


g

β
-
y

β
, m - y μ1 +

g μ2

β
-
y μ2

β
+ μ2 Π

Comparative Statics

csC01 = D[solnC02, {{m, Π, y, g}}]

TableForm[csC01, TableHeadings → {{"r", "p"}, {"m", "Π", "y", "g"}}]

0, 0, -
1

β
,
1

β
, 1, μ2, -μ1 -

μ2

β
,
μ2

β


m Π y g

r 0 0 -
1
β

1
β

p 1 μ2 -μ1 -
μ2
β

μ2
β

98 mathematica_intro.nb

Comparative Statics: Signs

csC01signs = Assuming[β > 0 && μ1 > 0 && μ2 > 0,

Simplify[Sign[csC01]]

]

TableForm[csC01signs /. {-1 → "-", 1 → "+"},

TableHeadings → {{"r", "p"}, {"m", "Π", "y", "g"}}]

{{0, 0, -1, 1}, {1, 1, -1, 1}}

m Π y g
r 0 0 - +

p + + - +

“Post Keynesian” Model (Exercise)

Play the “one structure for multiple models” game one more time. Work with the same structural equa-

tions. This time create a stylized “Post Keynesian” model by specifying that y and m are the endoge-

nous variables.

Differential Calculus and Nonlinear
Comparative Statics

Univariate Differential Calculus

Difference Quotients

Clear["Global`*"] (* clear all global symbols *)

f = Functionx, x2;

dq =
f[x + Δx] - f[x]

Δx
Simplify[dq]

-x2 + (x + Δx)2

Δx

2 x + Δx

Limit[dq, Δx → 0]

2 x

D[f[x], x]

2 x

mathematica_intro.nb 99

Average Rate of Change

ClearAll[f, x, x0, Δx]

f[x_] := x2; dfdx = (f[x + Δx] - f[x]) / Δx; x0 = 1;

{Manipulate[Plot[f[x], {x, -2, 2}, AxesLabel → {"x", "f(x)"},

PlotLabel → "Difference Quotient as Average Rate of Change",

Epilog → {Directive[Red], Line[{{x0, f[x0]}, {x0 + h, f[x0 + h]}}]}], {h, -1, 1}],

Plot[dfdx /. {x → 1, Δx → h}, {h, -1, 1}, AxesOrigin → {0, 0},

AxesLabel → {"Δx", "dq"}, PlotLabel → "Difference Quotients for x=1"]}



h

-2 -1 1 2
x

1

2

3

4

f(x)
Difference Quotient as Average Rate of Change

,

-1.0 -0.5 0.5 1.0
Δx

0.5

1.0

1.5

2.0

2.5

3.0

dq
Difference Quotients for x=1



100 mathematica_intro.nb

ManipulatePlotx2, a * a + 2 * a (x - a), {x, -2, 2}, PlotRange → {0, 4},

AxesLabel → {"x", "f(x)"}, AspectRatio → Automatic, ImageSize → 250,

Epilog → {PointSize[Medium], Red, Point[{a, a * a}]}, {a, -2, 2}

a

-2 -1 0 1 2
x

1

2

3

4
f(x)

Derivative

When it exists, we define the derivative as the limiting value of the difference quotient.

f' (x) = limh→0
f (x + h) - f (x)

h

Clear[dq, f, x, Δx]

f = Functionx, x2;

dq =
f[x + Δx] - f[x]

Δx
Limit[dq, Δx → 0]

-x2 + (x + Δx)2

Δx

2 x

Mathematica allows very natural notation for the derivative.

ClearAll[f, x]

f = x x2;

f'[x]

2 x

mathematica_intro.nb 101

g = x x3;

g'[x]

3 x2

Rules of Differentiation

(* illustrate sum rule *)

Clear[f, g, h, x]

h[x_] = f[x] + g[x];

h'[x]

f′[x] + g′[x]

(* illustrate product rule *)

Clear[f, g, h, x]

h[x_] = f[x] * g[x];

h'[x]

g[x] f′[x] + f[x] g′[x]

Taylor Series

Mathematica can produce a Taylor series expansion of an arbitrary function f around a point p.

Series[f[x], {x, p, 3}]

f[p] + f′[p] (x - p) +
1

2
f′′[p] (x - p)2 +

1

6
f(3)[p] (x - p)3 + O[x - p]4

You can also do this for specified functions.

expSeries = Series[Exp[x], {x, 0, 3}]

1 + x +
x2

2
+
x3

6
+ O[x]4

CoefficientList[expSeries, x]

1, 1,
1

2
,
1

6


The output of the Series command is a SeriesData object. (Use the the InputForm or FullForm com-

mand to examine it.) If you need a normal expression, use the Normal command.

Normal[expSeries]

1 + x +
x2

2
+
x3

6

102 mathematica_intro.nb

Map[

Function[{k}, Normal[Series[Exp[x], {x, 0, k}]]],

Range[10]

] /. {x → 1} // N

ListPlot[%]

{2., 2.5, 2.66667, 2.70833, 2.71667, 2.71806, 2.71825, 2.71828, 2.71828, 2.71828}

2 4 6 8 10

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

(* Interesting example from Mathematica documentation *)

(* Note use of Normal; cannot directly plot a Series *)

Plot[Evaluate[Table[Normal[Series[Cos[x], {x, 0, n}]], {n, 20}]], {x, 0, 2 Pi}]

1 2 3 4 5 6

-4

-2

2

4

Multivariate Differential Calculus
The gradient of a function is perpendicular to any curve in the level set. In this section we will illustrate

this. First we illustrate the gradient.

Simplify[Log[cd[n, k]] ⩵ Log[10] + 0.3 Log[k] + 0.7 Log[n], n > 0 && k > 0]

Log[cd[n, k]] ⩵ Log[10] + 0.3 Log[k] + 0.7 Log[n]

mathematica_intro.nb 103

ClearAll[y, n, k, cd]

cd = Function[{n, k}, 10 * n^0.7 * k^0.3]

{dydn, dydk} = D[cd[n, k], {{n, k}}]

nkstart = {n → 5, k → 5}

"output at (5,5):"

cdstart = cd[n, k] /. nkstart

"the gradient at (5,5):"

{dydn, dydk} /. nkstart

pt1 = {n, k, cd[n, k]} /. nkstart

pt2 = {n + dn, k + dk, cd[n + dydn, k + dydk]} /. nkstart

g1 = Plot3D[cd[n, k], {n, 0, 20}, {k, 0, 20}];

g2 = Graphics3D[{Arrowheads[0.025, Appearance → "Projected"],

Arrow[Tube[{pt1, pt2}]]}, PlotRange → {{0, 20}, {0, 20}, {0, 200}}];

kyf = Function{n, yf}, yf  10  n^0.7^1  0.3;

g3 = ParametricPlot3D[{n, kyf[n, cdstart], cdstart},

{n, 0, 20}, PlotRange → {{0, 20}, {0, 20}, {0, 200}}];

Show[{g1, g2, g3}]

"2d projection"

g1 = ContourPlot[cd[n, k] ⩵ cdstart, {n, 0, 20}, {k, 0, 20},

PlotPoints → 100, Epilog → Arrow[{{n, k}, {n + dydn, k + dydk}} /. nkstart]]

tangentSlope = D[kyf[n, cdstart], n] /. nkstart

g2 = ParametricPlot[{n, kyf[5, cdstart] + tangentSlope * (n - 5)},

{n, 0.1, 7}, PlotStyle → {Thin, Dashed}]

Show[{g1, g2}]

Function{n, k}, 10 n0.7 k0.3


7. k0.3

n0.3
,
3. n0.7

k0.7


{n → 5, k → 5}

output at (5,5):

50.

the gradient at (5,5):

{7., 3.}

{5, 5, 50.}

{5 + dn, 5 + dk, 106.256}

104 mathematica_intro.nb

2d projection

0 5 10 15 20

0

5

10

15

20

-2.33333

mathematica_intro.nb 105

1 2 3 4 5 6 7

5

10

15

0 5 10 15 20

0

5

10

15

20

106 mathematica_intro.nb

Non-linear Comparative Statics

A Non-linear System of Equations

Consider the following as our “structual” equations (without worrying too much about the nature of

economic structure).
e:islm.gmkt

Y  A (i -π, Y, G)

m L(i, Y)
(10)

Here Y is total production in the economy, A is the function determining demand for that production, i is

the nominal interest rate, π is the expected inflation rate, G measures the “fiscal stance” (i.e., how

expansionary fiscal policy is), and m is the real money supply.

ClearAll[fA, fL, i, y, m, Π, g] (* all Mma variables should start lower case *)

lmnl = m ⩵ fL[i, y];

isnl = y ⩵ fA[i - Π, y, g];

Produce a textbook “Keynesian” model by taking Y and i to be endogenous, or produce a textbook

“Classical” model by taking m and i to be endogenous.

Total Differentials

We will first consider the money market. Recall that equation (11) described money market equilibrium

as m  L(i,Y) This must hold both before and after any exogenous changes. That is, we require that

we start out in money market equilibrium, and we also require that we end up in money market equilib-

rium. It follows that the changes in the real money supply (d m) must equal the changes in real money

demand (d L).

dm⩵ dL (11)

The change in real money demand has two sources: changes in i and changes in Y. As usual, we will

represent these as d i and d Y. Of course, the change in real money demand depends not only on the

size of the changes in these arguments, but also on how sensitive money demand is to each of these

arguments.

dL Li di + LY dY (12)

Putting these two observations together, we get
e:islm.dmdl

dm Li di + LY dY (13)

We call this the “total differential” of the LM equation. It makes a very simple statement: we start out on

an LM curve, and we end up on an LM curve.

dlmnl = Dt[lmnl]

Dt[m] ⩵ Dt[y] fL(0,1)[i, y] + Dt[i] fL(1,0)[i, y]

Let’s make this a bit easier to read (but not to manipulate) by introducing some notation as rules. Note

mathematica_intro.nb 107

that this is purely for convenience in reading: we are using strings (not symbols) in the result.

notationRulesLM =

 fL(0,1)
[i, y] → "Ly", fL(1,0)

[i, y] → "Li", Dt[m] → dm, Dt[i] → di, Dt[y] → dy;

dlmnl /. notationRulesLM

dm ⩵ Li di + Ly dy

Next consider the goods market. Recall that the equation

Y  A (i -π, Y, G) (14)

represents equilibrium in the goods market. This must hold both before and after any exogenous

changes. That is, we require that we start out in goods market equilibrium, and we also require that we

end up in goods market equilibrium. It follows that the changes in real income must equal the changes

in real aggregate demand. Looking at the equation for the IS curve, we can see that this means that the

change in real income (d Y) must equal the change in real aggregate demand (d A).

dY⩵ dA (15)

The change in aggregate demand has three sources: changes in r, changes in Y, and changes in F.

We represent these changes as d r, d Y, and dG. Of course, the changes in aggregate demand depend

not only on the size of the changes in these arguments, but also on how sensitive aggregate demand is

to each of these arguments.

dA Ar (di - dΠ)
dr

+ AY dY + AG dG (16)

Putting these two pieces together, we have the total differential of the IS equation:

dY Ar(di - dπ) + AY dY + AG dG (17)

Note that A (· , · , ·) has only three arguments. Do not be misled by the fact that we choose to write r

as i -π. This does not change the number of arguments of the aggregate demand function. E.g., there

is no derivative Ai.

disnl = Dt[isnl]

Dt[y] ⩵ Dt[g] fA(0,0,1)[i - Π, y, g] +

Dt[y] fA(0,1,0)[i - Π, y, g] + (Dt[i] - Dt[Π]) fA(1,0,0)[i - Π, y, g]

notationRulesIS = fA(0,0,1)
[i - Π, y, g] → "AG",

fA(0,1,0)
[i - Π, y, g] → "Ay", fA(1,0,0)

[i - Π, y, g] → "Ar", Dt[g] → dg, Dt[Π] → dΠ;

notationRules = Join[notationRulesLM, notationRulesIS];

disnl /. notationRules

dy ⩵ AG dg + Ay dy + Ar (di - dΠ)

Implicit Function Theorem

The IFT provides the conditions under which we can characterize the partial derivatives of the reduced

form in terms of the partial derivatives of the structural form. That is, we can do qualitative comparative

statics.

108 mathematica_intro.nb

Review the IFT using the online notes.

“Keynesian” Model

Let us first consider a textbook Keynesian model. Assuming satisfaction of the assumptions of the

implicit function theorem, there is an implied reduced form for the Keynesian model. The reduced form

expresses the solution for each endogenous variables in terms of the exogenous variables. We will

represent this as

i i (m, π, G)

Y  Y(m, π, G)
(18)

The implicit function theorem tells us how to find the partial derivatives of i (., .) and Y (., .).

Note how we use the letter i to represent both a variable (on the left) and a function (on the right). This

is common practice among economists and mathematicians, as it helps us keep track of which function

is related to which variable. (However we will not usually be able to do this in a computer algebra

system.) Note that since we did not begin with an explicit functional form for the structural equations we

cannot hope to find an explicit functional form for the reduced form. Instead we rely on qualitative

information about the structural equations to make qualitative statements about the reduced form.

dlmnl

dlmnl /. notationRules

Dt[m] ⩵ Dt[y] fL(0,1)[i, y] + Dt[i] fL(1,0)[i, y]

dm ⩵ Li di + Ly dy

The total differential can be used to find the slope of the LM curve. Suppose we allow only i and Y to

change (so that d m  0). Then we must have

0 Li d i + LY d Y

d i

d Y L M

 -
LY

Li

> 0
(19)

Dt[lmnl] /. {Dt[m] → 0} /. notationRules

(* represent restricted total differential *)

SolveDt[lmnl] /. {Dt[m] → 0, Dt[y] → 1}, Dt[i] /. notationRules

0 ⩵ Li di + Ly dy

di → -
Ly

Li


This represents the way i and Y must change together to maintain equilibrium in the money market,

ceteris paribus. That is, this determines the slope of the “Keynesian” LM curve. Under the standard

assumptions that LY > 0 and Li < 0, the “Keynesian” LM curve has a positive slope.

Similarly, if we allow only i and Y to change in the goods market, we must have

mathematica_intro.nb 109

d Y  Ar d i + AY d Y

d i

d Y I S


1 - AY

Ar

< 0
(20)

restrictions = {Dt[m] → 0, Dt[g] → 0, Dt[Π] → 0}

Dt[isnl] /. restrictions /. notationRules

(* represent restricted total differential *)

SolveDt[isnl] /. restrictions /. {Dt[y] → 1}, Dt[i] /. notationRules

{Dt[m] → 0, Dt[g] → 0, Dt[Π] → 0}

dy ⩵ Ar di + Ay dy

di →
1 - Ay

Ar


This is the way i and Y must change together to maintain equilibrium in the goods market. That is, this

determines the slope of the “Keynesian” IS curve. Under the standard assumptions that 0 < AY < 1 and

Ar < 0, the “Keynesian” IS curve has a negative slope.

Solving the Nonlinear Keynesian Model

So we have seen what is required to stay on the IS curve and what is required to stay on the LM curve.

Putting these together we have

d Y  Ar(di - dπ) + AY d Y + AF dG

dm Li di + LY dY
(21)

When we insist that both of these equation hold together, we are insisting that we stay on both the IS

and LM curves simultaneously. In this system there are two endogenous variables, d r and d Y, which

are being determined so as to achieve this simultaneous satisfaction of the IS and LM equations.

Now we just solve two linear equations in two unknowns. First prepare to set up the system as a matrix

equation by moving all terms involving the endogenous variables to the left. (Note that this is the first

time we have paid attention to which variables are endogenous.)

-Ar di + dY - AY dY -Ar dπ + AF dG

Li di + LY dY dm
(22)

Now rewrite this system as a matrix equation in the form J x  b.


 -Ar (1 - AY)

 Li LY
 

 di

 dY
  

 -Ar dπ +AF dG

 dm
 (23)

Then solve for the endogenous variables by multiplying both sides by J-1.

 
 d i

 d Y
 

1

-Ar LY - (1 - AY) Li


 LY -(1 - AY)

 -Li -Ar
 

 -Ar dπ +AF dG

 d m


 
1

Ar LY + (1 - AY) Li


 -LY (1 - AY)

 Li Ar
 

 -Ar dπ +AF dG

 d m


(24)

110 mathematica_intro.nb

Letting Δ  Ar LY + (1 -AY) Li, we can write this as


 d i

 d Y
 

1

Δ

 -LY (1 - AY)

 Li Ar
 

 -Ar dπ +AG dG

 d m
 (25)

Invoking the standard assumptions on the structural form partial derivatives, listed above, we note that

Δ  Ar LY + (1 -AY) Li < 0.

solnK = Solve[dlmnl && disnl, {Dt[i], Dt[y]}];

solnK /. notationRules

di → -
-AG Ly dg + dm - Ay dm + Ar Ly dΠ

-Li + Ay Li - Ar Ly
, dy → -

-AG Li dg - Ar dm + Ar Li dΠ

Li - Ay Li + Ar Ly


Fiscal policy experiment:

 
 ∂i /∂G

 ∂Y /∂G
 

1

Δ

 -LY (1 - AY)

 Li Ar
 

 AG

 0


 
1

Δ

 -LY AF

 Li AF
  

 +

 +


(26)

(* find the partial responses to dg *)

$Assumptions = 1 > fA(0,1,0)
[i - Π, y, g] > 0 && fA(0,0,1)

[i - Π, y, g] > 0 &&

fA(1,0,0)
[i - Π, y, g] < 0 && fL(0,1)

[i, y] > 0 && fL(1,0)
[i, y] < 0

gpartials = solnK /. {Dt[m] → 0, Dt[Π] → 0, Dt[g] → 1}

gpartials /. notationRules // Simplify

{didg, dydg} = {Dt[i], Dt[y]} /. gpartials[[1]]

Sign[{didg, dydg}] // Simplify

1 > fA(0,1,0)[i - Π, y, g] > 0 && fA(0,0,1)[i - Π, y, g] > 0 &&

fA(1,0,0)[i - Π, y, g] < 0 && fL(0,1)[i, y] > 0 && fL(1,0)[i, y] < 0

Dt[i] → fL(0,1)[i, y] fA(0,0,1)[i - Π, y, g] 

-fL(1,0)[i, y] + fL(1,0)[i, y] fA(0,1,0)[i - Π, y, g] - fL(0,1)[i, y] fA(1,0,0)[i - Π, y, g],

Dt[y] → fL(1,0)[i, y] fA(0,0,1)[i - Π, y, g] 

fL(1,0)[i, y] - fL(1,0)[i, y] fA(0,1,0)[i - Π, y, g] + fL(0,1)[i, y] fA(1,0,0)[i - Π, y, g]

di → -
AG Ly

Li - Ay Li + Ar Ly
, dy →

AG Li

Li - Ay Li + Ar Ly


fL(0,1)[i, y] fA(0,0,1)[i - Π, y, g] 

-fL(1,0)[i, y] + fL(1,0)[i, y] fA(0,1,0)[i - Π, y, g] - fL(0,1)[i, y] fA(1,0,0)[i - Π, y, g],

fL(1,0)[i, y] fA(0,0,1)[i - Π, y, g] 

fL(1,0)[i, y] - fL(1,0)[i, y] fA(0,1,0)[i - Π, y, g] + fL(0,1)[i, y] fA(1,0,0)[i - Π, y, g]

{1, 1}

Monetary policy experiment:

We know from the implicit function theorem that this is the same as solving for the partial derivatives of

mathematica_intro.nb 111

the reduced form. , we can write

 
 ∂i /∂m

 ∂Y /∂m
 

1

Δ

 -LY (1 - AY)

 Li Ar
 

 0

 1


 
1

Δ

 (1 - AY)

 Ar
  

 -

 +


(27)

(* find the partial responses to dm *)

mpartials = solnK /. {Dt[g] → 0, Dt[Π] → 0, Dt[m] → 1};

mpartials /. notationRules // Simplify

{didm, dydm} = {Dt[i], Dt[y]} /. mpartials[[1]]

Sign[{didm, dydm}] // Simplify

di →
1 - Ay

Li - Ay Li + Ar Ly
, dy →

Ar

Li - Ay Li + Ar Ly


-1 - fA(0,1,0)[i - Π, y, g]  -fL(1,0)[i, y] + fL(1,0)[i, y] fA(0,1,0)[i - Π, y, g] -

fL(0,1)[i, y] fA(1,0,0)[i - Π, y, g], fA(1,0,0)[i - Π, y, g] 

fL(1,0)[i, y] - fL(1,0)[i, y] fA(0,1,0)[i - Π, y, g] + fL(0,1)[i, y] fA(1,0,0)[i - Π, y, g]

{-1, 1}

Experiment: change in expected inflation.

Recall our reduce form:


 d i

 d Y
 

1

Δ

 -LY (1 - AY)

 Li Ar
 

 -Ar dπ +AG dG

 d m
 (28)

Now set dG = 0 and dm = 0.


 d i

 d Y
 

1

Δ

 -LY (1 - AY)

 Li Ar
 

 -Ar dπ

 0
 (29)

Now divide both sides by dπ.

 
 ∂i /∂π

 ∂Y /∂π
 

1

Δ

 -LY (1 - AY)

 Li Ar
 

 -Ar

 0


 
1

Δ


 LY Ar

 -Li Ar
  

 +

 +


(30)

“Classical” Model (Exercise)

In the Classical case we follow the same procedures and the same type of reasoning, making only a

single change: instead of Y we take m to be endogenous, so that m and i are the endogenous vari-

ables. Note that we start with the same system of structural equations:

112 mathematica_intro.nb

Y  A (i -π, Y, F)

m L(i, Y)
(31)

It follows that the total differential is unchanged:

d Y  Ar (d i - dπ) + AY d Y + AF dF

dm Li d i + LY d Y
(32)

Of course, all the partial derivatives from the structural form are unchanged: Ar < 0, 0 < AY < 1, AF > 0,

Li < 0, and LY > 0.

But of course we have a different set of endogenous variables, so we have a different implied reduced

form:

mm (Y, π, F)

i i(Y, π, F)
(33)

So when we write down the matrix equation, we use our new set of endogenous variables:


 Ar 0

 -Li 1
 

 d i

 d m
  

 Ar dπ + (1 - AY) d Y - AF d F

 LY d Y
 (34)

Solving for the changes in the endogenous variables:


 d i

 d m
 

1

Ar


 1 0

 Li Ar
 

 Ar dπ + (1 - AY) d Y - AF d F

 LY d Y
 (35)

So for example

 
 ∂i /∂π

 ∂m /∂π
 

1

Ar


 1 0

 Li Ar
 

 Ar

 0


 
1

Ar


 Ar

 Li Ar


  
 +

 -


(36)

Optimization

Univariate Optimization
For optimization, you may want to use `Maximize` or `FindMaximum`.

mathematica_intro.nb 113

Profit Maximization Example

Clear[q, p]

demand = q ⩵ 1500 - p  2

inverseDemand = Solve[demand, p] // Simplify

tr = p * q /. First[inverseDemand] (* total revenue *)

q ⩵ 1500 -
p

2

{{p → 3000 - 2 q}}

(3000 - 2 q) q

(* specify total cost fn *)

tc = 50 + 400 * q + q2  2;

profits = tr - tc // Simplify

-
5

2
20 - 1040 q + q2

Plot[profits, {q, 0, 1000}]

200 400 600 800 1000

100 000

200 000

300 000

400 000

500 000

600 000

700 000

dπdq = D[profits, q]

foc = dπdq ⩵ 0

-
5

2
(-1040 + 2 q)

-
5

2
(-1040 + 2 q) ⩵ 0

Solve[foc, q]

proposedMax = First[%]

{{q → 520}}

{q → 520}

Check the curvature at the stationary point.

114 mathematica_intro.nb

D[profits, {q, 2}]

-5

When we are interested in global extrema, we can use Maximize or Minimize. These work especially

well with polynomials.

Maximize[profits, q]

{675950, {q → 520}}

MaximizeE-0.05*t
* E t/2 , t > 0, t

{12.1825, {t → 50.}}

Clear[t]

f = t t  2 - 0.05 * t

Maximize t  2 - 0.05 * t, t > 0, t

Functiont,
t

2
- 0.05 t

{2.5, {t → 50.}}

f = t t  2 - 0.05 * t

Plot[f[t], {t, 0, 100}]

Functiont,
t

2
- 0.05 t

20 40 60 80 100

1.6

1.8

2.0

2.2

2.4

mathematica_intro.nb 115

f'[t]

foc = f'[t] ⩵ 0

Solve[foc, t]

f''[t]

-0.05 +
1

2 2 t

-0.05 +
1

2 2 t
⩵ 0

{{t → 50.}}

-
1

4 2 t3/2

Cost Functions

tc = q3 - 3 * q2 + 5 * q + 1;

{"marginal cost", mc = D[tc, q]}

{"average cost", ac = tc / q} // Apart

Plot[{mc, ac}, {q, 0, 5}]

marginal cost, 5 - 6 q + 3 q2

average cost, 5 +
1

q
- 3 q + q2

1 2 3 4 5

10

20

30

40

NSolve[mc == ac, q, Reals]

{{q → 1.67765}}

NSolve[D[ac, q] ⩵ 0 && q > 0, q]

NMinimize[{ac, q > 0}, q]

{{q → 1.67765}}

{3.37763, {q → 1.67765}}

116 mathematica_intro.nb

Basic Considerations

ClearAll["Global`*"]

When we are interested in global extrema, we can use Maximize or Minimize. (To search locally use

FindMaximum and FindMinimum.) These work especially well with polynomials, but can work with many

functions.

MaximizeE-0.05*t
* E t/2 , t > 0, t

{12.1825, {t → 50.}}

A strictly increasing tranformation of the objective function produces the same maximizer. Of course,

the value of the objective function will be transformed.

Maximize t  2 - 0.05 * t, t > 0, t

{2.5, {t → 50.}}

While the use of Maximize is convenient, we whould also be able to approach the problem from first

principles.

f2max = t  2 - 0.05 * t;

tmax = Solve[D[f2max, t] ⩵ 0, t] // Simplify

f2max /. tmax

{{t → 50.}}

{2.5}

Of course we should consider the curvature of the function as well. We can check that the second

derivative is negative, or we can just look at a plot:

D[f2max, {t, 2}] < 0 /. tmax // Simplify

Plot[f2max, {t, 0, 100}]

{True}

20 40 60 80 100

1.6

1.8

2.0

2.2

2.4

mathematica_intro.nb 117

Of course we can do the same exercise with an explicit function definition.

f[t_] := t  2 - 0.05 * t

tmax = Solve[f'[t] ⩵ 0, t]

f''[t] < 0 /. tmax // Simplify

{{t → 50.}}

{True}

Laffer Curve

taxes = θ t - t2

dtaxes = D[taxes, t]

Solve[dtaxes ⩵ 0, t]

d2taxes = D[dtaxes, t] (* check second order condition *)

t - t2 θ

(1 - 2 t) θ

t →
1

2


-2 θ

Plot[taxes /. {θ → 10}, {t, 0, 1}, ImageSize → 200]

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

Minimizing a Loss Function

L = -0.5 * (pi - pie) + pi2

dL = D[L, pi]

Solve[dL ⩵ 0, pi]

D[dL, pi]

pi2 - 0.5 (pi - pie)

-0.5 + 2 pi

{{pi → 0.25}}

2

pi2 - 0.5 * (pi - pie)

pi2 - 0.5 (pi - pie)

118 mathematica_intro.nb

Clear[x, y]

y = x4 - 2 * x2

Plot[y, {x, -2, 2}, PlotRange → {-2, 2}]

-2 x2 + x4

-2 -1 1 2

-2

-1

1

2

y

dydx = D[y, x]

-2 x2 + x4

-4 x + 4 x3

Plot[dydx, {x, -2, 2}]

-2 -1 1 2

-10

-5

5

10

soln05 = Solve[dydx ⩵ 0, x]

{{x → -1}, {x → 0}, {x → 1}}

D[dydx, x] /. soln05

{8, -4, 8}

Profit Maximizing Monopolist

Let us apply this to a profit maximizing monopolist.

mathematica_intro.nb 119

ClearAll["Global`*"]

"assumed demand schedule"

demand = q ⩵ 1500 - p  2

"inverse demand:"

inverseDemand = Solve[demand, p]〚1〛 // Simplify

"total revenue:"

totalRevenue = p * q /. inverseDemand

assumed demand schedule

q ⩵ 1500 -
p

2

inverse demand:

{p → 3000 - 2 q}

total revenue:

(3000 - 2 q) q

No introduce some costs of production:

totalCost = 50 + 400 * q + q2  2;

profits = totalRevenue - totalCost // Simplify

Plot[profits, {q, 0, 1000}]

-
5

2
20 - 1040 q + q2

200 400 600 800 1000

100 000

200 000

300 000

400 000

500 000

600 000

700 000

Once again, we can take advantage of the Maximize command:

Maximize[profits, q]

{675950, {q → 520}}

Or we can approach this from first principles:

120 mathematica_intro.nb

dprofits = D[profits, q]

foc = dprofits ⩵ 0

soln = Solve[foc, q]

profits /. soln

-
5

2
(-1040 + 2 q)

-
5

2
(-1040 + 2 q) ⩵ 0

{{q → 520}}

{675950}

Marginal Cost and Average Cost

tc = q3 - 3 * q2 + 5 * q + 1;

{"marginal cost", mc = D[tc, q]}

{"average cost", ac = tc / q}

Plot[{mc, ac}, {q, 0, 5}]

marginal cost, 5 - 6 q + 3 q2

average cost,
1 + 5 q - 3 q2 + q3

q


1 2 3 4 5

10

20

30

40

mc ⩵ ac // Simplify

q`intersect = Solve[mc ⩵ ac, q, Reals]

2 q2 ⩵
1

q
+ 3 q

q → Root-1 - 3 #12 + 2 #13 &, 1

We can request an exact expression for this.

mathematica_intro.nb 121

ToRadicals[q`intersect]

q →
1

6
3 + 81 - 54 2 

1/3
+ 3 3 + 2 2 

1/3


Alternatively, we can request a numerical value.

N[q`intersect]

{{q → 1.67765}}

If we want a numerical value, we can more simply start out by requesting a numerical solution.

NSolve[mc == ac, q, Reals]

{{q → 1.67765}}

Next, let us consider the minimum of the average cost curve. It looks like average cost reaches a

minimum where the two curves intersect. Let us check. We can use the Minimize command, as long as

we are careful to impose the positivity constraint on q.

Minimize[{ac, q ≥ 0}, q] // Simplify

N[%]

5 - 3 Root-4 - 3 #12 + #13 &, 1 +
3

4
Root-4 - 3 #12 + #13 &, 1

2
,

q → Root-1 - 3 #12 + 2 #13 &, 1

{3.37763, {q → 1.67765}}

Let us try this again, this time by being explicit about the first order condition.

q`minac = Solve[D[ac, q] ⩵ 0, Reals]

q`minac ⩵ q`intersect

q → Root-1 - 3 #12 + 2 #13 &, 1

True

Two more times, this time using NSolve and NMinimize.

NSolve[D[ac, q] ⩵ 0 && q > 0, q]

NMinimize[{ac, q > 0}, q]

{{q → 1.67765}}

{3.37763, {q → 1.67765}}

122 mathematica_intro.nb

Univariate Example: Laffer Curve

taxes = θ t - t2

dtaxes = D[taxes, t]

Solve[dtaxes ⩵ 0, t]

d2taxes = D[dtaxes, t]

t - t2 θ

(1 - 2 t) θ

t →
1

2


-2 θ

Plot[taxes /. {θ → 10}, {t, 0, 1}, ImageSize → 200]

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

Plot-x4, {x, -1, 1}, ImageSize → 200

-1.0 -0.5 0.5 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

L = -0.5 * (pi - pie) + pi2

dL = D[L, pi]

Solve[dL ⩵ 0, pi]

D[dL, pi]

pi2 - 0.5 (pi - pie)

-0.5 + 2 pi

{{pi → 0.25}}

2

pi2 - 0.5 * (pi - pie)

pi2 - 0.5 (pi - pie)

mathematica_intro.nb 123

Clear[x, y]

y = x4 - 2 * x2

Plot[y, {x, -2, 2}, PlotRange → {-2, 2}]

-2 x2 + x4

-2 -1 1 2

-2

-1

1

2

y

dydx = D[y, x]

-2 x2 + x4

-4 x + 4 x3

Plot[dydx, {x, -2, 2}]

-2 -1 1 2

-10

-5

5

10

soln05 = Solve[dydx ⩵ 0, x]

{{x → -1}, {x → 0}, {x → 1}}

D[dydx, x] /. soln05

{8, -4, 8}

124 mathematica_intro.nb

Bivariate Optimization

Basic Bivariate Example

Clear[x, y, z]

z = x2 + y2

Plot3D[z, {x, -1, 1}, {y, -1, 1},

AxesLabel → {"x", "y", "z"}, MeshFunctions → {#3 &}]

x2 + y2

Plot3D[z, {x, -1, 1}, {y, -1, 1},

AxesLabel → {"x", "y", "z"}, Mesh → 5]

If we hold one variable constant while varying the other, we produce two-dimensional plots. The slopes

we see are partial derivatives.

mathematica_intro.nb 125

Manipulate

Plotx2 + y2, {x, -1, 1}, PlotRange → {0, 2},

AxesLabel → {"x", "z"}, ImageSize → 200, {y, -1, 1},

ManipulatePlotx2 + y2, {y, -1, 1}, PlotRange → {0, 2},

AxesLabel → {"y", "z"}, ImageSize → 200, {x, -1, 1}



y

-1.0 -0.5 0.0 0.5 1.0
x

0.5

1.0

1.5

2.0
z

,

x

-1.0 -0.5 0.0 0.5 1.0
y

0.5

1.0

1.5

2.0
z



We search for an extremum looking at the stationary points: find (x1, x2) such that the two first-order

partial derivatives equal zero. The slopes of the following grid lines are the partial derivatives.

gradient01 = D[z, {{x, y}}]

Solve[gradient01 ⩵ 0, {x, y}, Reals]

{2 x, 2 y}

{{x → 0, y → 0}}

ContourPlotz, {x, -1, 1}, {y, -1, 1},

ContourLabels → Style[Text[#3, {#1, #2}], GrayLevel[.3], 6] &, ImageSize → 250

0.2

0.4

0.6

0.8

1

1.2

1.2

1.21.2

1.4

1.4

1.4

1.4

1.6

1.6

1.6 1.6

1.8
1.8

1.8 1.8

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Small Changes Can Matter

Suppose we are looking for an extremum of f (x, y). If we consider any strictly increasing transformation

126 mathematica_intro.nb

of f , it will have the same extrema.

d0 = x2 + y2

Plot3D[d0, {x, -1, 1}, {y, -1, 1}, Mesh → 5, MeshFunctions → {#3 &}]

x2 + y2

Again, search for an extremum by trying to find (x1, x2) such that the two first-order partial derivatives

equal zero. What happens and why?

d

dx
x2 + y2 =

d z

dz
dz
dx

=
1

2 z

dz
dx

=
2 x

2 x2+y2

where z = x2 + y2

gradient02 = D[d0, {{x, y}}]

Solve[gradient02 ⩵ 0, {x, y}, Reals]


x

x2 + y2
,

y

x2 + y2


{}

mathematica_intro.nb 127

z = x2 - y2

Plot3D[z, {x, -1, 1}, {y, -1, 1}]

x2 - y2

grad = D[z, {{x, y}}]

hess = D[grad, {{x, y}}];

hess // MatrixForm

{2 x, -2 y}


2 0
0 -2



L = x y - λ (x + y - 4)

D[L, {{x, y, λ}}]

Solve[% ⩵ 0, {x, y, λ}]

x y - (-4 + x + y) λ

{y - λ, x - λ, 4 - x - y}

{{x → 2, y → 2, λ → 2}}

128 mathematica_intro.nb

Curvature

ClearAll[z, x, y, f]

D[f[x, y], {{x, y}}]

D[%, {{x, y}}] // MatrixForm

f(1,0)[x, y], f(0,1)[x, y]

f(2,0)[x, y] f(1,1)[x, y]
f(1,1)[x, y] f(0,2)[x, y]

Let us return to our earlier problem.

z

gradient01

z

{2 x, 2 y}

We have found that there is a critical point at (0, 0). Now we ask how to test if it is a minimum or a

maximum (or neither). Just as in the univariate case, the answer lies in the curvature of the function

near the critical point. Near a maximum, a function will be concave. Near a minimum, a function will be

convex. When we have access to the second derivatives of the function, we can test for concavity or

convexity by looking at the matrix of second-order partial derivatives, known as the Hessian matrix. The

determinant of the Hessian at a critical point is called the discriminant: if it is non-zero, then we can

examine the Hessian for determinateness in order to determine curvature.

hessian01 = D[gradient01, {{x, y}}]

discriminant01 = Det[hessian01]

{{2, 0}, {0, 2}}

4

Since the determinant is positive, our critical point is a candidate maximum or minimum. (It would be

negative for a saddle-point.) To determine which we have, we examine the first element of the Hessian.

It is positive, so we have a minimum.

Application: Consumer Optimization

Let us solve a simple consumer optimization problem with Cobb-Douglas utility.

FullSimplifyExpandAll(a w)^a (w - a w)^1 - a, {w > 0, 1 > a > 0}

-(-1 + a)
a

1 - a

a
w

mathematica_intro.nb 129

$Assumptions = True

Clear[u, c1, c2, w, α, λ, p1, p2]

u = c1^α * c2^1 - α (* utility as a function of consumption *)

e = p1 c1 + p2 c2 (* expenditure *)

bc = (w - e) (* budget constraint *)

ℒ = u + λ * bc

dℒ = D[ℒ, {{c1, c2, λ}}] // Simplify

focs = Thread[dℒ ⩵ 0] (* assume constraint binds *)

(* Mma cannot quite handle this system, but we can lend a hand *)

Eliminate[focs[[1 ;; 2]], λ]

umax`soln = Solve[% && focs[[-1]], {c1, c2}] // Flatten (* optimal consumption *)

{umax`c1, umax`c2} = {c1, c2} /. umax`soln

v = u /. umax`soln // Simplify (* indirect utility function *)

(* Roy's identity *)

{umax`c1, umax`c2} ⩵ -D[v, {{p1, p2}}]  D[v, w] // Simplify

True

c1α c21-α

c1 p1 + c2 p2

-c1 p1 - c2 p2 + w

c1α c21-α + (-c1 p1 - c2 p2 + w) λ

c1-1+α c21-α α - p1 λ, -c1α c2-α (-1 + α) - p2 λ, -c1 p1 - c2 p2 + w

c1-1+α c21-α α - p1 λ ⩵ 0, -c1α c2-α (-1 + α) - p2 λ ⩵ 0, -c1 p1 - c2 p2 + w ⩵ 0

c1α c2 p2 α ⩵ c11+α p1 (1 - α) && c1 ≠ 0

c1 →
w α

p1
, c2 → -

-w + w α

p2



w α

p1
, -

-w + w α

p2


w α

p1

α w - w α

p2

1-α

True

130 mathematica_intro.nb

(* numerical example with plot: *)

params = {α -> 0.4, p1 → 1, p2 → 2, w → 3}

ustar = v /. params

bc

bc ⩵ 0 /. umax`soln /. params

u ⩵ ustar /. {α → 0.4}

ContourPlot[{Evaluate[bc ⩵ 0 /. params], Evaluate[u ⩵ ustar /. {α → 0.4}]},

{c1, 0, 5}, {c2, 0, 5},

Epilog → Point[{c1, c2} /. umax`soln /. params]]

{α → 0.4, p1 → 1, p2 → 2, w → 3}

1.00976

-c1 p1 - c2 p2 + w

True

c10.4 c20.6 ⩵ 1.00976

0 1 2 3 4 5

0

1

2

3

4

5

The expenditure function is the solution to a dual minimization problem. This is implied by the indirect

utility function, but we need to help Mathematica a little along the way.

mathematica_intro.nb 131

(* need more info to isolate w *)

assumptions = p1 > 0 && p2 > 0 && w > 0 && 1 > α > 0

v = FullSimplify[ExpandAll[v], assumptions]

(* or v=Assuming[assumptions,Collect[v,w,Simplify]] *)

(* or Simplify[Factor[v],Assumptions→assumptions] *)

w /. Flatten@Solve[v ⩵ u0, w] (* expenditure function *)

Simplify% ⩵
p1^α * p2^1 - α

α^α * 1 - α^1 - α

u0, assumptions

p1 > 0 && p2 > 0 && w > 0 && 1 > α > 0

-

w (-1 + α) 
p2 α

p1-p1 α

α

p2

-

p2 u0  p2 α
p1-p1 α


-α

-1 + α

True

We can also approach this directly as a cost minimization problem.

132 mathematica_intro.nb

u = c1α c21-α;

e = p1 c1 + p2 c2;

assumptions = p1 > 0 && p2 > 0 && 1 > α > 0 && u0 > 0;

emin`ℒ = e + λ2 u0 - u;

D[emin`ℒ, {{c1, c2, λ2}}];

emin`focs = Thread[% ⩵ 0] (* assume constraint binds *)

(* Mma can Solve the system, but ... *)

emin`soln = Solve[emin`focs, {c1, c2, λ2}] // Flatten

(* simplification helps except with the solution for c1: *)

FullSimplify[%, Assumptions → assumptions]

(* However, ExpToTrig can help: *)

FullSimplify[% // ExpToTrig, Assumptions → assumptions]

emin = Simplify[e /. emin`soln, Assumptions → assumptions]

Simplifyemin ⩵ Power
p1

α
, α * Power

p2

1 - α
, 1 - α u0, Assumptions → assumptions

p1 - c1-1+α c21-α α λ2 ⩵ 0, p2 - c1α c2-α (1 - α) λ2 ⩵ 0, -c1α c21-α + u0 ⩵ 0

c1 → ⅇⅈ π-ⅈ π α+α Log[p1]-α Log[p2]+α Log[-1+α]-α Log[α] p2 u0 α  (p1 (-1 + α)),

c2 → ⅇ-ⅈ π α+α Log[p1]-α Log[p2]+α Log[-1+α]-α Log[α] u0,

λ2 →
1

-1 + α
ⅇⅈ π-ⅈ π α+α Log[p1]-α Log[p2]+α Log[-1+α]-α Log[α] p2

c1 → -ⅇ-ⅈ π α u0
p1 (-1 + α)

p2 α

-1+α
, c2 → u0 (p2 α)-α (p1 - p1 α)α, λ2 → -

p2
p1 -1+ 1

α


p2

α

-1 + α


c1 → u0
p1 - p1 α

p2 α

-1+α
, c2 → u0 (p2 α)-α (p1 - p1 α)α, λ2 → -

p2
p1 -1+ 1

α


p2

α

-1 + α


-

p2 u0
p1 -1+ 1

α


p2

α

-1 + α

True

Consumer Surplus

The compensating variation for a price change is the change in ependiture required to restore the

original utility level: cv(p,p’,u)=e(p’,u)-e(p,u). This is the change in income required to shift the new

budget line back to the old indifference curve.

mathematica_intro.nb 133

pm01 = {α → 0.4, p1 → 1, p2 → 1, w → 100}

pm02 = {α → 0.4, p1 → 5, p2 → 1, w → 100}

u01 = v /. pm01

umax`soln

e02 = emin /. pm02 /. {u0 → u01}

e02 - w /. pm01

{α → 0.4, p1 → 1, p2 → 1, w → 100}

{α → 0.4, p1 → 5, p2 → 1, w → 100}

51.017

c1 →
w α

p1
, c2 → -

-w + w α

p2


190.365

90.3654

134 mathematica_intro.nb

u01 ⩵ u /. pm01

ContourPlot[Evaluate[{

u01 ⩵ u /. pm01,

e ⩵ w /. pm01,

e ⩵ w /. pm02,

e ⩵ e02 /. pm02

}],

{c1, 0, 200}, {c2, 0, 200},

PlotLabel → "Compensating Variation",

FrameLabel → {"c1", "c2"},

ContourStyle →

{{Thin, Black}, {Thin, Gray}, {Thin, Dashed, Gray}, {Dashed, Thin, Red}},

PlotRangePadding → None

]

51.017 ⩵ c10.4 c20.6

0 50 100 150 200
0

50

100

150

200

c1

c2

Compensating Variation

Constrained Optimization

Lagrange Multiplier Technique

We now approach optimization subject to an equality constraint using the method of Lagrange multipli-

ers. We focus on the case of maximizing a function of two variables, f (x, y), subject to the equality

constraint g(x, y) = k. We set up the Lagrangean as

mathematica_intro.nb 135

ℒ (x1, x2, λ) = f (x1, x2) + λ (k - g (x1, x2))

We search for an extremum by trying to find (x1, x2, λ) such that the three first-order partial derivatives

of the Lagrangean equal zero.

Utility Maximization

For example, suppose we want to maximize U = x1
α *x2

1-α subject to an income constraint. This prob-

lem is fundamentally simple to do by hand, but it contains enough nonlinearity to create difficulties for

Mathematica. We anticipate that by transforming the objective function. Since we know that u will be

positive, we can maximize its logarithm (a strictly increasing transformation).

Clear[ℒ, x1, x2, α, λ, M, p1, p2]

u = 2 * x1α * x21-α

bc = p1 * x1 + p2 * x2 - M

ℒ = Log[u] - λ * bc;

grad = D[ℒ, {{x1, x2, λ}}]

2 x1α x21-α

-M + p1 x1 + p2 x2


α

x1
- p1 λ,

1 - α

x2
- p2 λ, M - p1 x1 - p2 x2

In order to find potential optima, we set the gradient to zero and solve.

soln = Solve[grad ⩵ 0, {x1, x2, λ}, Reals]〚1〛

x1 →
M α

p1
, x2 → -

M (-1 + α)

p2
, λ →

1

M


hess = D[grad, {{x1, x2, λ}}]

-
α

x12
, 0, -p1, 0, -

1 - α

x22
, -p2, {-p1, -p2, 0}

Example

For example, if α = 0.3, p1 = 1, p2 = 2, and M = 20, we have

params = {α → 0.3, p1 → 1, p2 → 2, M → 20}

"unconstrained solution:"

{u`x1, u`x2, u`λ} = {x1, x2, λ} /. soln /. params

u`x = {u`x1, u`x2}

{α → 0.3, p1 → 1, p2 → 2, M → 20}

unconstrained solution:

6., 7.,
1

20


{6., 7.}

136 mathematica_intro.nb

cp1 = Plot3D[u /. params, {x1, 0, 20}, {x2, 0, 20}];

cp2 = ContourPlot3D[Evaluate[0 ⩵ bc /. params], {x1, 0, 20}, {x2, 0, 20}, {z, 0, 20}];

Show[{cp1, cp2}]

x2soln = Solve[0 ⩵ bc /. params, x2]〚1〛

ParametricPlot3Dx1, 10 - x1  2, u /. params /. x2 → 10 - x1  2, {x1, 0, 20}

x2 →
20 - x1

2


mathematica_intro.nb 137

umax = u /. soln /. params

cp1 = ContourPlot[u /. params, {x1, 0, 20},

{x2, 0, 20}, ContourShading → None, Contours → {3, umax, 9},

PlotPoints → 100, ContourLabels → None, FrameLabel → {"x1", "x2"}];

cp2 = RegionPlot[Evaluate[(bc /. params) ≤ 0], {x1, 0, 20}, {x2, 0, 20}];

Show[{cp1, cp2}]

u`gradf = D[u, {{x1, x2}}] /. params /. {x1 → u`x1, x2 → u`x2}

u`gradg = D[c1, {{x1, x2}}] /. params

gu`grads =

Graphics[{{Red, Arrow[{u`x, u`x + u`gradf}]}, Arrow[{u`x, u`x + u`gradg}]}];

Show[{cp1, cp2, gu`grads}]

13.3673

0 5 10 15 20

0

5

10

15

20

x1

x2

{0.668365, 1.33673}

{0, 0}

138 mathematica_intro.nb

0 5 10 15 20

0

5

10

15

20

x1

x2

A Second Constraint: Essential Good

Suppose you need at least 10 of x1.

mathematica_intro.nb 139

c1 = bc /. params

c2 = 10 - x1

cp3 = RegionPlot[{c1 ≤ 0 && c2 ≤ 0}, {x1, 0, 20}, {x2, 0, 20}, PlotPoints → 100];

Show[{cp1, cp3}]

-20 + x1 + 2 x2

10 - x1

0 5 10 15 20

0

5

10

15

20

x1

x2

To solve this, we need to use the Kuhn-Tucker conditions.

Motivation, we would like to make u as big as possible, but we impose penalties for constraint violation.

If we had nonnegative penalty weights for constraint violation, we might write

max u(x) - λ1 g1(x) - λ2 g2(x)

objx = Log[u] - λ1 c1 - λ2 c2 /. params

dobjx = D[objx, {{x1, x2, λ1, λ2}}]

(* Solve[dobjx.{1,1,λ1,λ2}⩵0,{x1,x2,λ1,λ2}] *)

-(-20 + x1 + 2 x2) λ1 - (10 - x1) λ2 + Log2 x10.3 x20.7


0.3

x11.
- λ1 + λ2,

0.7

x21.
- 2 λ1, 20 - x1 - 2 x2, -10 + x1

We can see that x1 = 10 and x2 = 5, which allows us to solve for the multipliers.

140 mathematica_intro.nb

soln34 = Solve[dobjx[[3 ;; 4]] ⩵ 0, {x1, x2}]

Solve[dobjx[[1 ;; 2]] ⩵ 0 /. soln34〚1〛, {λ1, λ2}]

{{x1 → 10, x2 → 5}}

{{λ1 → 0.07, λ2 → 0.04}}

xsoln = {x1soln, x2soln} = {x1, x2} /. soln34〚1〛

gradf = D[u, {{x1, x2}}] /. params /. {x1 → x1soln, x2 → x2soln}

gradg1 = D[c1, {{x1, x2}}] /. {x1 → x1soln, x2 → x2soln}

gradg2 = D[c2, {{x1, x2}}] /. {x1 → x1soln, x2 → x2soln}

ggrads = Graphics[{Arrowheads[Small], {Red, Arrow[{xsoln, xsoln + gradf}]},

Arrow[{xsoln, xsoln + gradg1}], Arrow[{xsoln, xsoln + gradg2}]}];

Show[{cp1, cp3, ggrads}]

{10, 5}

{0.369343, 1.7236}

{1, 2}

{-1, 0}

0 5 10 15 20

0

5

10

15

20

x1

x2

Cost Minimization

For a good discussion of the elasticity of substitution, see Ted Bergstrom’s class notes:

http://www.econ.ucsb.edu/~tedb/Courses/GraduateTheoryUCSB/elasticity%20of%20substitutionrevised.

tex.pdf

mathematica_intro.nb 141

We are going to work with the CES production function

Clear[q, n, k, a, α, ρ, w, r, λ]

assumeCES = a > 0 && n > 0 && k > 0 && 1 > α > 0 && ρ < 1

q = a * α * kρ + 1 - α nρ1/ρ;

a > 0 && n > 0 && k > 0 && 1 > α > 0 && ρ < 1

The CES production function represents perfect substitutes when ρ → 1 and becomes a Cobb-Douglas

when ρ→ 0. The limit as ρ→ -∞ is a Leontief production function. Currently (version 10), Mathematica

is not able to determine that.

Map[Limit[q, #] &, {ρ → 1, ρ → 0, ρ → -Infinity}]

a (n + k α - n α), a kα n1-α, Limita (nρ (1 - α) + kρ α)
1

ρ, ρ → -∞

Let us take up the case of ρ → 0 in a bit more detail. It is convenient to work with the log of q.

lq = Log[q] // PowerExpand

Log[a] +
Log[nρ (1 - α) + kρ α]

ρ

In the resulting fraction,t is easy to see that as ρ → 0 both the numerator and denominator approach 0.

We therefore apply L’Hopitals rule and consider the limiting ratio of the derivatives of the numerator and

denominator. This is easily seen to yield the log of the Cobb-Douglas functional form.

DLognρ 1 - α + kρ α, ρ

Limit[%, ρ → 0]

kρ α Log[k] + nρ (1 - α) Log[n]

nρ (1 - α) + kρ α

α Log[k] + Log[n] - α Log[n]

Like the Cobb-Douglas, the CES production function is linear homogeneous. For example, if we double

the inputs, we double the output. We have to coax Mathematica a bit to show this.

q2 = q /. {n → λ n, k → λ k}

q2 = q2 // PowerExpand

q2 = q2 // Simplify

q2 = q2 // PowerExpand

λ q ⩵ q2 // Simplify

a (α (k λ)ρ + (1 - α) (n λ)ρ)
1

ρ

a (nρ (1 - α) λρ + kρ α λρ)
1

ρ

a ((-nρ (-1 + α) + kρ α) λρ)
1

ρ

a (-nρ (-1 + α) + kρ α)
1

ρ λ

True

Examine the marginal products. By inspection, they are both positive. Furthermore, their ratio depends

142 mathematica_intro.nb

only on the input ratio k /n.

{qn, qk} = D[q, {{n, k}}] // Simplify

Simplify[qk / qn]

a n-1+ρ (1 - α) (-nρ (-1 + α) + kρ α)-1+ 1

ρ, a k-1+ρ α (-nρ (-1 + α) + kρ α)-1+ 1

ρ 

k-1+ρ n1-ρ α

1 - α

Since the CES function is linear homogeneous, it must satisfy Euler’s theorem.

Simplify[q ⩵ k * qk + n * qn]

True

Since ρ < 1, the marginal products are decreasing.

qnn = D[qn, n] // Simplify

qkk = D[qk, k] // Simplify

-a kρ n-2+ρ (-1 + α) α (-nρ (-1 + α) + kρ α)-2+ 1

ρ (-1 + ρ)

-a k-2+ρ nρ (-1 + α) α (-nρ (-1 + α) + kρ α)-2+ 1

ρ (-1 + ρ)

We want to minimize cost, w n + r k, subject to achieving the given level of production q0. We can

reduce the nonlinearity of our problem by using an equivalent constraint.

ℒ = w * n + r * k + λ q0ρ - aρ * α * kρ + 1 - α nρ;

grad = D[ℒ, {{n, k, λ}}]

w - aρ n-1+ρ (1 - α) λ ρ, r - aρ k-1+ρ α λ ρ, q0ρ - aρ (nρ (1 - α) + kρ α)

Unfortunately, Mathematica cannot quite get us there.

focs = Thread[grad ⩵ 0] (* constraint binds *)

Assuming[w1 > 0 && w2 > 0 && q0 > 0 && assumeCES, Solve[grad ⩵ 0, {n, k, λ}]]

w - aρ n-1+ρ (1 - α) λ ρ ⩵ 0, r - aρ k-1+ρ α λ ρ ⩵ 0, q0ρ - aρ (nρ (1 - α) + kρ α) ⩵ 0

Solve::ifun :

Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. 

Solve::svars : Equations may not give solutions for all "solve" variables. 

k → -
n1-ρ w α

r (-1 + α)

1

1-ρ

, λ → -
a-ρ n1-ρ w

(-1 + α) ρ


So, let us use the first two first-order conditions to eliminate λ. The result is

mathematica_intro.nb 143

w / r ⩵ Power[n / k, ρ - 1] * 1 - α  α

Power
α w

1 - α r
,

1

ρ - 1
 ⩵

n

k

w

r
⩵


n
k

-1+ρ

(1 - α)

α

w α

r (1 - α)

1

-1+ρ
⩵

n

k

Noting that nρ is proportional to kρ, we plug into the constraint to find

q0ρ == aρ const * kρ 1 - α + kρ α

q0ρ ⩵ aρ (const kρ (1 - α) + kρ α)

or equivalentlly

ksoln01 = k →
q0

a
Powerα + 1 - α * const,

-1

ρ
 /. const -> Power

α w

1 - α r
,

ρ

ρ - 1


k →

q0 α + (1 - α) 
w α

r (1-α)


ρ

-1+ρ 
-1/ρ

a

We can better see the link to the CES if we rewrite this as

ksoln02 = k ->
q0

a
Power

r

α
,

1

ρ - 1
 α Power

r

α
,

ρ

ρ - 1
 + 1 - α Power

w

1 - α
,

ρ

ρ - 1


-1/ρ

k →
1

a
q0

r

α

1

-1+ρ w

1 - α

ρ

-1+ρ
(1 - α) +

r

α

ρ

-1+ρ
α

-1/ρ

By symmetry we expect

wsoln02 = n ->
q0

a
Power

w

1 - α
,

1

ρ - 1
 α Power

r

α
,

ρ

ρ - 1
 + 1 - α Power

w

1 - α
,

ρ

ρ - 1


-1/ρ

n →
1

a
q0

w

1 - α

1

-1+ρ w

1 - α

ρ

-1+ρ
(1 - α) +

r

α

ρ

-1+ρ
α

-1/ρ

Substitute into r k + w n.

r k + w n /. ksoln02 /. wsoln02 // Simplify

1

a
q0 w

w

1 - α

1

-1+ρ
+ r

r

α

1

-1+ρ w
w

1 - α

1

-1+ρ
+

r

α

ρ

-1+ρ
α

-1/ρ

To better see the link with the CES function, note that

w
w

1 - α

1

-1+ρ
+ r

r

α

1

-1+ρ w
w

1 - α

1

-1+ρ
+

r

α

ρ

-1+ρ
α

-1/ρ

⩵

Power1 - α
w

1 - α

ρ

ρ-1
+ α

r

α

ρ

ρ-1 ,
ρ - 1

ρ
 // PowerExpand // Simplify

True

144 mathematica_intro.nb

Note that since cost is proportional to output, we have constant marginal cost.

Additional Topics

Relations

Cartesian Product

Cartesian Product using Tuples

Mathematica does not offer a specialized Cartesian product command, but the functionality exists in the

Tuples command. Again, be aware that Tuples does not delete duplicates.

Tuples[{{0, 0, 1}, {2, 3}}]

Tuples[DeleteDuplicates /@ {{0, 0, 1}, {2, 3}}]

{{0, 2}, {0, 3}, {0, 2}, {0, 3}, {1, 2}, {1, 3}}

{{0, 2}, {0, 3}, {1, 2}, {1, 3}}

Cartesian Product using Outer and Flatten

The Outer command takes as inputs a function and lists of arguments. It applies the function to all

possible argument combinations, taking the first argument from the first list, the second from the second

list, and so forth.

Clear[f, a, b, c, d]

Outer[f, {a, b}, {c, d}]

{{f[a, c], f[a, d]}, {f[b, c], f[b, d]}}

Note how the result is broken up into sublists by the value of the first argument. If we do not want that,

we can use Flatten to change the structure to a simple list.

Clear[f, a, b, c, d]

Outer[f, {a, b}, {c, d}] // Flatten

{f[a, c], f[a, d], f[b, c], f[b, d]}

We can Flatten lists to various levels:

Flatten[{0, {1}, {3, {4}}, {5, {6}, {7, {8}}}}, 1]

Flatten[{0, {1}, {3, {4}}, {5, {6}, {7, {8}}}}, 2]

Flatten[{0, {1}, {3, {4}}, {5, {6}, {7, {8}}}}, 3]

{0, 1, 3, {4}, 5, {6}, {7, {8}}}

{0, 1, 3, 4, 5, 6, 7, {8}}

{0, 1, 3, 4, 5, 6, 7, 8}

mathematica_intro.nb 145

By choosing the List command as our function, the Outer command can also be used to produce a

Cartesian product. But since it will return a list of lists of lists, you will probably want to Flatten the first

level.

cp = Outer[List, {0, 1}, {2, 3}]

Flatten[cp, 1]

{{{0, 2}, {0, 3}}, {{1, 2}, {1, 3}}}

{{0, 2}, {0, 3}, {1, 2}, {1, 3}}

Relations

Random Relation

Start with a set direct product (Cartesian product):

n6 = Range[6];

n6sq = Tuples[{n6, n6}];

Grid[Partition[n6sq, 6]]

{1, 1} {1, 2} {1, 3} {1, 4} {1, 5} {1, 6}
{2, 1} {2, 2} {2, 3} {2, 4} {2, 5} {2, 6}
{3, 1} {3, 2} {3, 3} {3, 4} {3, 5} {3, 6}
{4, 1} {4, 2} {4, 3} {4, 4} {4, 5} {4, 6}
{5, 1} {5, 2} {5, 3} {5, 4} {5, 5} {5, 6}
{6, 1} {6, 2} {6, 3} {6, 4} {6, 5} {6, 6}

Any subset of the set direct product is a binary relation.

randomrelation = RandomSample[n6sq, 18]

subsetQ[n6sq, randomrelation]

{{4, 1}, {6, 2}, {5, 4}, {6, 1}, {5, 1}, {2, 2}, {1, 1}, {3, 1}, {4, 4},

{1, 5}, {2, 5}, {3, 5}, {3, 3}, {1, 2}, {2, 3}, {2, 1}, {4, 6}, {1, 4}}

subsetQ[{{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 1}, {2, 2},

{2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 1}, {3, 2}, {3, 3}, {3, 4}, {3, 5},

{3, 6}, {4, 1}, {4, 2}, {4, 3}, {4, 4}, {4, 5}, {4, 6}, {5, 1}, {5, 2}, {5, 3},

{5, 4}, {5, 5}, {5, 6}, {6, 1}, {6, 2}, {6, 3}, {6, 4}, {6, 5}, {6, 6}},

{{4, 1}, {6, 2}, {5, 4}, {6, 1}, {5, 1}, {2, 2}, {1, 1}, {3, 1}, {4, 4},

{1, 5}, {2, 5}, {3, 5}, {3, 3}, {1, 2}, {2, 3}, {2, 1}, {4, 6}, {1, 4}}]

Adjacency Matrix

Adjacency Matrix Representation

We can represent any finite binary relation with an adjacency matrix. This gives a boolean matrix repre-

sentation of the binary relation (X, Y, R), where matrix element aij is 1 if (xi, yj) ∈R and is otherwise 0.

146 mathematica_intro.nb

boolrep = If[MemberQ[randomrelation, #], 1, 0] & /@ n6sq;

adjacencyMatrix = Partition[boolrep, 6];

MatrixForm[adjacencyMatrix]

1 1 0 1 1 0
1 1 1 0 1 0
1 0 1 0 1 0
1 0 0 1 0 1
1 0 0 1 0 0
1 1 0 0 0 0

Visual Representations

Matrix Plot

An adjacency matrix can be given a nice visual representation using the MatrixPlot command. (The

ArrayPlot command could also be used.)

(* matrix plot of a random relation *)

adjacencyMatrix = RandomChoice[{0.6, 0.4} → {0, 1}, {6, 6}]

{

MatrixPlot[adjacencyMatrix, Mesh → True,

ImageSize → 200, ColorFunction → "Monochrome"],

ArrayPlot[adjacencyMatrix, Mesh → True,

ImageSize → 200, ColorFunction → "Monochrome"]

}

{{0, 1, 0, 0, 1, 1}, {1, 0, 0, 0, 1, 0}, {0, 1, 1, 0, 0, 0},

{0, 0, 0, 0, 1, 0}, {0, 0, 1, 0, 0, 1}, {0, 0, 0, 1, 1, 0}}



1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

, 

Directed Graph Display

A binary relation on a set X can be nicely represented as a directed graph.

mathematica_intro.nb 147

adjacencyMatrix = Table[If[i ≤ j, 1, 0], {i, 5}, {j, 5}];

% // MatrixForm

GraphPlotadjacencyMatrix,

DirectedEdges → True,

EdgeRenderingFunction → {Red, Arrowheads[Large], Arrow[#1, 0.1]} &,

VertexLabeling → True

1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

1

2

3

4

5

148 mathematica_intro.nb

abcGraphPlot[rules_] := GraphPlotrules,

VertexLabeling → True,

MultiedgeStyle → False,

EdgeRenderingFunction → {Red, Arrowheads[0.05], Arrow[#1, 0.15]} &,

DirectedEdges → True,

SelfLoopStyle → 0.3,

VertexCoordinateRules → {a → {1, Sqrt[3]}, b → {0, 0}, c → {2, 0}},

VertexRenderingFunction →

{GrayLevel[0.9], EdgeForm[Black], Disk[#, .15], Black, Text[#2, #1]} &,

ImagePadding → 10,

ImageSize → 200

abcGraphPlot[{a → a, a → b, b → a, c → c}]

abcGraphPlot[{a → a, a → b, b → a}]

a

b c

a

b

mathematica_intro.nb 149

? Gray
Info-a9239a23-5ddd-4fe4-aa32-11be485c2603

Gray represents the color gray in graphics or style specifications. 

? Integer

Info-e9142e5f-ee1c-4239-a322-8cec97ac9586

Integer is the head used for integers. 

? Disk
Info-761ef30e-c1ab-40aa-bf23-9b718c36e9c1

Disk[{x, y}, r] represents a disk of radius r centered at {x, y}.

Disk[{x, y}] gives a disk of radius 1.

Disk[{x, y}, {rx, ry}] gives an axis-aligned elliptical disk with semiaxes lengths rx and ry.

Disk[{x, y}, …, {θ1, θ2}] gives a sector of a disk from angle θ1 to θ2. 

? GraphPlot

Info-9a5b3143-e16a-4444-9974-c867d56b4e7f

GraphPlot[g] generates a plot of the graph g.

GraphPlot[{vi1 → vj1, vi2 → vj2, …}] generates a plot of the graph in which vertex vik is connected to vertex vjk.

GraphPlot[{{vi1 → vj1, lbl1}, …}] associates labels lblk with edges in the graph.

GraphPlot[m] generates a plot of the graph represented by the adjacency matrix m. 

More Graphs

Mathematica supports: graph product, lexicographic product, rooted product, tensor product, graph

sum, graph difference, graph power, graph join, graph intersection, and graph union.

A complete graph has an edge between each pair of vertices. We can of course construct this “by hand”:

150 mathematica_intro.nb

Clear[n, step, points, points2pairs, lines]; n = 6; step = 2 * π / n;

points = Table[{Cos[step * i], Sin[step * i]}, {i, n}]

points2pairs = Subsets[points, {2}];

lines = Line[points2pairs];

Graphics[lines, ImageSize → {200, 200}]


1

2
,

3

2
, -

1

2
,

3

2
, {-1, 0}, -

1

2
, -

3

2
, 

1

2
, -

3

2
, {1, 0}

But we may want to accept the Mathematica defaults:

Show[

CompleteGraph[6],

ImageSize → Small

]

Introduction to Polynomials
Solvea * x2 + b * x + c ⩵ 0, x

x →
-b - b2 - 4 a c

2 a
, x →

-b + b2 - 4 a c

2 a


Mathematica can also provide general solutions for the cubic and quartic cases. However that is as far

as a general solution goes, since Galois and Abel

mathematica_intro.nb 151

showed early in the 19th century that a general solution for quintics is impossible. However, special

cases are solvable.

polyrule = {c0 → 0, c1 → 1, c2 → 2, c3 → 3, c4 → 4, c5 → 5}

Solvec5 * x5 + c4 * x4 + c3 * x3 + c2 * x2 + c1 * x + c0 == 0 /. polyrule, x

{c0 → 0, -20 + x1 + 2 x2 → 1, 10 - x1 → 2, c3 → 3, c4 → 4, c5 → 5}

{x → 0},

x →
1

10
-2 + 5 -

6

25
+

1

-5 + 10 ⅈ1/3
+
-1 + 2 ⅈ1/3

52/3
-

1

5
-60 - 25 -5 + 10 ⅈ1/3 -

25 × 52/3

-1 + 2 ⅈ1/3
- 56   -

6

25
+

1

-5 + 10 ⅈ1/3
+
-1 + 2 ⅈ1/3

52/3
,

x →
1

10
-2 + 5 -

6

25
+

1

-5 + 10 ⅈ1/3
+
-1 + 2 ⅈ1/3

52/3
+

1

5
-60 - 25 -5 + 10 ⅈ1/3 -

25 × 52/3

-1 + 2 ⅈ1/3
- 56   -

6

25
+

1

-5 + 10 ⅈ1/3
+
-1 + 2 ⅈ1/3

52/3
,

x →
1

10
-2 - 5 -

6

25
+

1

-5 + 10 ⅈ1/3
+
-1 + 2 ⅈ1/3

52/3
-

1

5
-60 - 25 -5 + 10 ⅈ1/3 -

25 × 52/3

-1 + 2 ⅈ1/3
+ 56   -

6

25
+

1

-5 + 10 ⅈ1/3
+
-1 + 2 ⅈ1/3

52/3
,

x →
1

10
-2 - 5 -

6

25
+

1

-5 + 10 ⅈ1/3
+
-1 + 2 ⅈ1/3

52/3
+

1

5
-60 - 25 -5 + 10 ⅈ1/3 -

25 × 52/3

-1 + 2 ⅈ1/3
+ 56   -

6

25
+

1

-5 + 10 ⅈ1/3
+
-1 + 2 ⅈ1/3

52/3


In addition, we can always expect that finding an approximate numerical solution is possible.

NSolvec5 * x5 + c4 * x4 + c3 * x3 + c2 * x2 + c1 * x + c0 == 0 /. polyrule, x // TableForm

x → -0.537832 - 0.358285 ⅈ
x → -0.537832 + 0.358285 ⅈ
x → 0.
x → 0.137832 - 0.678154 ⅈ
x → 0.137832 + 0.678154 ⅈ

Sequences

Generating Finite Sequences

Mathematica makes it easy to generate finite sequences.

Basic use of the `Table` command generates sequences from an expression given an iterator. The

iterator is a list containing the variable in the expression, the initial value of the iterator variable, and the

152 mathematica_intro.nb

final value of the iterator variable.

Table1  n, {n, 1, 10}

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9
,

1

10


Basic use of the `RecurrenceTable` command generates sequences for a recurrence relations.

Clear[a]

RecurrenceTable[{a[t] ⩵ 0.9 a[t - 1], a[0] ⩵ 100}, a, {t, 0, 10}]

{100., 90., 81., 72.9, 65.61, 59.049, 53.1441, 47.8297, 43.0467, 38.742, 34.8678}

When the recurrence relation is linear, the `LinearRecurrence` command is an alternative to the use of

`RecurrenceTable`.

LinearRecurrence[{0.9}, {100}, 11]

{100., 90., 81., 72.9, 65.61, 59.049, 53.1441, 47.8297, 43.0467, 38.742, 34.8678}

Limits

Mathematica usally takes limits from the right. However you can instruct Mathematica to take the limit

from the left by using the Direction option.

ClearAll[f, x]

f[x_] :=
1  3 x < 0

2  3 x ≥ 0

Plot[f[x], {x, -1, 1}, PlotRange → {0, 1}, ImageSize → 200]

{

Limit[f[x], {x → 0}, Direction → 1] (* limit from left *),

Limit[f[x], {x → 0}, Direction → -1] (* limit from right *),

Limit[f[x], {x → 0}] (* limit from right (default) *),

Limit[f[x], {x → ∞}] (* limit from left (because only sensible) *),

Limit[f[x], {x → -∞}] (* limit from right *)

}

-1.0 -0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0


1

3
, 

2

3
, 

2

3
, 

2

3
, 

1

3


We say the limit exists if and only if it exists and is the same from the left and the right. So we see that

f (x) does not have a limit at x = 0.

mathematica_intro.nb 153

A function need not be defined at a point in order to have a well-defined limit there. Consider two classic

example of sin(x) /x. The plot suggests that although the function is undefined at x = 0 it still has a well-

defined limit there, and we confirm this with the Limit function.

Plot
Sin[x]

x
, {x, -10, 10}, Exclusions → {x ⩵ 0}, ImageSize → 200

Limit
Sin[x]

x
, {x → 0}, Direction → 1, Limit

Sin[x]

x
, {x → 0}

-10 -5 5 10
-0.2

0.2

0.4

0.6

0.8

1.0

{{1}, {1}}

 We see that the limit from the left matches the limit from the right for sin(x) /x. In contrast, consider 1 /x.

It too is undefined at x = 0, but it does not have a limit there. See why by examining the plot.

Plot
1

x
, {x, -1, 1}, Exclusions → {x ⩵ 0}, ImageSize → 200

Limit
1

x
, {x → 0}, Direction → 1, Limit

1

x
, {x → 0}

-1.0 -0.5 0.5 1.0

-10

-5

5

10

{{-∞}, {∞}}

Parameter Dependent Limits

If an expression includes a parameter, the limiting value may naturally depend on that parameter.Tor-

rence and Torrence (p.198) offer the following example.

Clear[x, n]

Limit
1 - xn

n
, {x → 0}

Limit
1 - xn

n
, x → 0

However we can pin down the limit if we know whether n is positive or negative. We can use the

Assumptions option to use this information.

154 mathematica_intro.nb

Limit
1 - xn

n
, {x → 0}, Assumptions → {n < 0},

Limit
1 - xn

n
, {x → 0}, Assumptions → {n > 0}

{∞}, 
1

n


Logistic Map

The logistic function and its fixed points:

ClearAll[f, a, x]

f[x_] := a x 1 - x

fp1 = Solve[x ⩵ f[x], x]

{x → 0}, x →
-1 + a

a


Stability of the steady state: we need a slope less than unity in absolute value:

D[f[x], x] // Simplify

% /. fp1 // Simplify

a - 2 a x

{a, 2 - a}

So for a ∈ (0, 1), the stable fixed point is 0. But for a ∈ (1, 3), the stable fixed point is (a - 1) /a.

However, something interesting happens as we pass 3. We can see by composing the logistic function

with itself that there are now two more fixed points of f°f.

f2[x_] := f[f[x]]

Collect[f2[x], x]

fp2 = Solve[x ⩵ f2[x], x]

-3 - 2 a + a^2 ⩵ a - 3 a + 1 // Simplify

a2 x + (-1 - a) a2 x2 + 2 a3 x3 - a3 x4

{x → 0}, x →
-1 + a

a
, x →

a + a2 - a -3 - 2 a + a2

2 a2
, x →

a + a2 + a -3 - 2 a + a2

2 a2


True

Since we already knew about 0 and 1 - 1 /a, solving directly is really too much work. Let us instead

form the polynomial whose roots we’re seeking and divide it by the polynomial whose roots we’ve found:

mathematica_intro.nb 155

poly4fp1 = CollectTimes @@ x - x /. fp1, x

PolynomialQuotientRemainder[x - f2[x], poly4fp1, x] // Simplify

poly4fp2 = %〚1〛

Solve[poly4fp2 ⩵ 0, x]

(1 - a) x

a
+ x2

a 1 + a - a x + a2 (-1 + x) x, 0

a 1 + a - a x + a2 (-1 + x) x

x →
a + a2 - a -3 - 2 a + a2

2 a2
, x →

a + a2 + a -3 - 2 a + a2

2 a2


Note that we do not get new fixed points of f°f until we reach a = 3.0. Then suddenly we have twice as

many.

g1 = Plot[Evaluate[{f[x], f2[x]} /. {a → 3.2}], {x, 0, 1},

PlotRange → {{0, 1}, {0, 1}},

AspectRatio → 1,

Epilog → Line[{{0, 0}, {1, 1}}]

]

Export[mathimages <> "logistic-ff2.pdf", g1];

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

StringJoin::string : String expected at position 1 in mathimages<> logistic-ff2.pdf. 

Export::chtype : First argument mathimages<> logistic-ff2.pdf is not a valid file specification. 

What’s more, although our old stable fixed point is now unstable, the two new points are initially stable.

156 mathematica_intro.nb

In an interesting bit of symmetry, the slope of f ◦ f is the same at each of the new fixed points.

D[f2[x], x] /. fp2 // Simplify

Plot4 + 2 a - a2, 1, -1, {a, 3, 4},

PlotStyle → {Blue, {Gray, Dashed}, {Gray, Dashed}}

Solve[4 + 2 a - a^2 ⩵ -1, a]

% // N

a2, (-2 + a)2, 4 + 2 a - a2, 4 + 2 a - a2

3.2 3.4 3.6 3.8 4.0

-4

-3

-2

-1

1

a → 1 - 6 , a → 1 + 6 

{{a → -1.44949}, {a → 3.44949}}

We can again proceed in the same fasion. But it is f ◦4 not f ◦3 that provides the next periodic attractors.

mathematica_intro.nb 157

f3[x_] := f[f[f[x]]]

f4[x_] := Nest[f, x, 4]

Collect[f3[x], x]

Plot[Evaluate[{f[x], f3[x], f4[x]} /. {a → 3.5}], {x, 0, 1},

AspectRatio → 1, PlotRange → {{0, 1}, {0, 1}}, Prolog → Line[{{0, 0}, {1, 1}}]]

a3 x + a3 -1 - a - a2 x2 + a3 2 a + 2 a2 + 2 a3 x3 +

a3 -a - a2 - 6 a3 - a4 x4 + a3 6 a3 + 4 a4 x5 + a3 -2 a3 - 6 a4 x6 + 4 a7 x7 - a7 x8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

158 mathematica_intro.nb

PolynomialQuotientRemainder[x - f4[x], poly4fp1 * poly4fp2, x]

poly4fp4 = Collect[%[[1]], x]

Solve[poly4fp4 ⩵ 0, x] // Simplify;

% /. {{a → 3.5}}

1 + a2 + -a2 - a3 - a4 - a5 x + 2 a3 + a4 + 4 a5 + a6 + 2 a7 x2 +

-a3 - 5 a5 - 4 a6 - 5 a7 - 4 a8 - a9 x3 + 2 a5 + 6 a6 + 4 a7 + 14 a8 + 5 a9 + 3 a10 x4 +

-4 a6 - a7 - 18 a8 - 12 a9 - 12 a10 - 3 a11 x5 + a6 + 10 a8 + 17 a9 + 18 a10 + 15 a11 + a12 x6 +

-2 a8 - 14 a9 - 12 a10 - 30 a11 - 6 a12 x7 + 6 a9 + 3 a10 + 30 a11 + 15 a12 x8 +

-a9 - 15 a11 - 20 a12 x9 + 3 a11 + 15 a12 x10 - 6 a12 x11 + a12 x12, 0

1 + a2 + -a2 - a3 - a4 - a5 x + 2 a3 + a4 + 4 a5 + a6 + 2 a7 x2 +

-a3 - 5 a5 - 4 a6 - 5 a7 - 4 a8 - a9 x3 + 2 a5 + 6 a6 + 4 a7 + 14 a8 + 5 a9 + 3 a10 x4 +

-4 a6 - a7 - 18 a8 - 12 a9 - 12 a10 - 3 a11 x5 + a6 + 10 a8 + 17 a9 + 18 a10 + 15 a11 + a12 x6 +

-2 a8 - 14 a9 - 12 a10 - 30 a11 - 6 a12 x7 + 6 a9 + 3 a10 + 30 a11 + 15 a12 x8 +

-a9 - 15 a11 - 20 a12 x9 + 3 a11 + 15 a12 x10 - 6 a12 x11 + a12 x12

{{{x → 0.38282}, {x → 0.500884}, {x → 0.826941},

{x → 0.874997}, {x → 0.049385 - 0.0241573 ⅈ}, {x → 0.049385 + 0.0241573 ⅈ},

{x → 0.166354 - 0.0761994 ⅈ}, {x → 0.166354 + 0.0761994 ⅈ},

{x → 0.505703 - 0.177965 ⅈ}, {x → 0.505703 + 0.177965 ⅈ},

{x → 0.985737 - 0.00710474 ⅈ}, {x → 0.985737 + 0.00710474 ⅈ}}}

Cobweb Plots

Clear[pts, min, max, f, x, x0]

cobwebPoints[f_, x0_, niter_] := Module[{x = x0},

Table[{{x, x}, {x, x = f[x]}}, {niter}]~Flatten~1

]

cobwebPlot[f_, x0_, niter_, burn_: 0] := Module[{pts, min, max},

pts = cobwebPoints[f, x0, niter + burn];

min = Min@Flatten@pts;

max = Max@Flatten@pts;

Plot[f[x], {x, min, max},

PlotStyle → {Thick},

PlotRange → All,

AxesOrigin → {min, min},

AspectRatio → 1,

Prolog → {Thin, LightGray, Line[{{min, min}, {max, max}}]},

Epilog →

{{Blue, Point[pts[[2 * burn + 1]]]}, Thin, Red, Arrow[pts[[2 * burn + 1 ;;]]]}

]]

mathematica_intro.nb 159

GraphicsRow

cobwebPlot3.2 # 1 - # &, 0.4, 9, cobwebPlot3.2 # 1 - # &, 0.4, 9, 20,

PlotLabel → "a=3.2"

GraphicsRow

cobwebPlot3.0 # 1 - # &, 0.4, 9, cobwebPlot3.0 # 1 - # &, 0.4, 9, 200,

PlotLabel → "a=3.0"

GraphicsRow

cobwebPlot3.5 # 1 - # &, 0.4, 9, cobwebPlot3.5 # 1 - # &, 0.4, 9, 100,

PlotLabel → "a=3.5"

GraphicsRow

cobwebPlot3.7 # 1 - # &, 0.4, 15, cobwebPlot3.7 # 1 - # &, 0.4, 15, 100

0.5 0.6 0.7 0.8

0.5

0.6

0.7

0.8

0.5 0.6 0.7 0.8

0.5

0.6

0.7

0.8

a=3.2

0.45 0.50 0.55 0.60 0.65 0.70

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.45 0.50 0.55 0.60 0.65 0.70

0.45

0.50

0.55

0.60

0.65

0.70

0.75

a=3.0

160 mathematica_intro.nb

0.5 0.6 0.7 0.8

0.5

0.6

0.7

0.8

0.9

0.5 0.6 0.7 0.8

0.5

0.6

0.7

0.8

0.9

a=3.5

0.4 0.5 0.6 0.7 0.8 0.9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Difference Equations

Function Iteration

Nest and NestList

We can produce the values of a recurrence relation through function iteration. For a function of one

argument, Mathematica makes it easy with its Nest command.

For example, if you would like to repeatedly apply a function f starting from an inital value x0,

Clear[f];

Nest[f, x0, 3]

f[f[f[x0]]]

If you need the sequence of values from the function iteration, use NestList.

NestList[f, x0, 3]

{x0, f[x0], f[f[x0]], f[f[f[x0]]]}

For example, here is a simple recurrence relation computation:

mathematica_intro.nb 161

Nest
#

2
&, 128, 3

NestList
#

2
&, 128, 3

16

{128, 64, 32, 16}

Simulating an AR(1) Process

Clear[f, x]

f[x_] := 0.8 * x

niter = 20

series = NestList[f, 5, niter];

plot1 = ListLinePlot[series, PlotRange → {-5, 5}]

20

5 10 15 20

-4

-2

2

4

Clear[f, x]

f[x_] := 0.8 * x + RandomReal[{-1, 1}]

series = NestList[f, 5, niter];

plot2 = ListLinePlot[series, PlotRange → {-5, 5}];

Show[{plot1, plot2}]

5 10 15 20

-4

-2

2

4

162 mathematica_intro.nb

NestWhile and NestWhileList

Often we do not know ahead of time how many iterations we need to do. In this case we can use

NestWhile (or NestWhileList). Note that we produce a new value after each time the test passes.

NestWhileList#  2 &, 128, # > 1 &

{128, 64, 32, 16, 8, 4, 2, 1}

Recursive Definition

We can recursively define the values produced by a difference equation, as long as we provide a base

case.

Clear[s, t]

s[t_Integer] :=
128 t == 0
s[t-1]

2
t > 0

s[3]

? s

16

Info-dd46dcc0-9bfd-4004-a1f4-7e51dd81645c

Global`s

Info-dd46dcc0-9bfd-4004-a1f4-7e51dd81645c

s[t_Integer] := Piecewise{128, t ⩵ 0}, 
1
2
s[t - 1], t > 0

Trace[s[3]]

s[3],
128 3 ⩵ 0
1
2
s[3 - 1] 3 > 0 , 16

Note the two different uses of the equal sign in this function defintion: delayed assignment (:=), and

equality (==). Note that Mathematica makes memoization of computed values trivial. If we assign values

as we compute them, they become part of the definition of the function s (and correspondingly consume

memory). This can substantially increase speed of the some inputs are used many times.

Clear[s, t]

s[t_Integer] :=
s[t] = 128 t == 0
s[t] =

s[t-1]
2

t > 0

Note the three different uses of the equal sign in this function defintion: assignment (=), delayed assign-

ment (:=), and equality (==). Now calling the function s fills a hash table with values, so if we call it

again with the same value it is found rather than computed. We can see this by using the Trace func-

tion, which will trace the steps in the computation.

mathematica_intro.nb 163

Trace[s[3]]

Trace[s[3]]

s[3],
s[3] = 128 3 ⩵ 0
s[3] =

1
2
s[3 - 1] 3 > 0 ,

{3 - 1, 2}, s[2],
s[2] = 128 2 ⩵ 0
s[2] =

1
2
s[2 - 1] 2 > 0 , {2 - 1, 1}, s[1],

s[1] = 128 1 ⩵ 0
s[1] =

1
2
s[1 - 1] 1 > 0 , {1 - 1, 0}, s[0],

s[0] = 128 0 ⩵ 0
s[0] =

1
2
s[0 - 1] 0 > 0 ,

{s[0] = 128, 128}, 128, 
1

2
,
1

2
,

128

2
, 64, s[1] = 64, 64, 64, 

1

2
,
1

2
,

64

2
, 32, s[2] = 32, 32, 32, 

1

2
,
1

2
,

32

2
, 16, s[3] = 16, 16, 16

{s[3], 16}

Clear[λ]

mA = {{3, 2}, {3, 4}}

mA2 = mA - λ * IdentityMatrix[2]

cpoly = Det[mA2] ⩵ 0

cvals = Solve[cpoly, λ]

Solve[mA2.{{x1}, {x2}} ⩵ 0]

sys = Eigensystem[mA]

{v1, v2} = sys[[2]]

mA2.v1 /. {λ → sys[[1]][[1]]}

mA2.v2 /. {λ → sys[[1]][[2]]}

P = Transpose@sys[[2]]

Inverse[P].mA.P

{{3, 2}, {3, 4}}

{{3 - λ, 2}, {3, 4 - λ}}

6 - 7 λ + λ2 ⩵ 0

{{λ → 1}, {λ → 6}}

{x1 → 0, x2 → 0}, {x2 → -x1, λ → 1}, x2 →
3 x1

2
, λ → 6

{{6, 1}, {{2, 3}, {-1, 1}}}

{{2, 3}, {-1, 1}}

{0, 0}

{0, 0}

{{2, -1}, {3, 1}}

{{6, 0}, {0, 1}}

164 mathematica_intro.nb

Recurrence Table

Mathematica provides the RecurrenceTable command to allow easy computation of the values of a

difference equation, give initial conditions. Note that the syntax uses the equals symbol, not the assign-

ment symbol.

Clear[d]

RecurrenceTabled[n + 1] == d[n]  2, d[0] == 128, d, {n, 0, 10}

128, 64, 32, 16, 8, 4, 2, 1,
1

2
,
1

4
,
1

8


A Quirk

The RecurrenceTable has a substantial quirk: it pre-evaluates the right hand side functions defining the

recurrence realtions.

Clear[a, n]

(* the following will lead to RandomReal only being called once!! *)

series = RecurrenceTable[

{a[n + 1] ⩵ 0.8 * a[n] + RandomReal[{-1, 1}], a[0] ⩵ 5}, a, {n, 1, 10}];

series[[2 ;;]] - 0.8 * series[[;; -2]]

{-0.084371, -0.084371, -0.084371, -0.084371,

-0.084371, -0.084371, -0.084371, -0.084371, -0.084371}

A workaround is to require a numeric input by wrapping the function. (Thanks to Daniel Lichtblau.)

Clear[a, n, ct]

shock[n_?IntegerQ] := RandomReal[{-1, 1}]

series = RecurrenceTable[{a[n + 1] ⩵ 0.8 * a[n] + shock[n], a[0] ⩵ 5}, a, {n, 1, 10}]

ListLinePlot[series, PlotRange → {-2, 6}]

{3.04071, 1.61645, 1.34378, 1.98742, 0.623257,

0.329599, 1.14613, 0.28714, -0.0329157, 0.390409}

2 4 6 8 10

-2

2

4

6

The RecurrenceTable command can handle systems of equations.

mathematica_intro.nb 165

10

? RSolve

Info-a083cc70-2646-4c7c-9700-315c0574b34a

RSolve[eqn, a[n], n] solves a recurrence equation for a[n].

RSolve[{eqn1, eqn2, …}, {a1[n], a2[n], …}, n] solves a system of recurrence equations.

RSolve[eqn, a[n1, n2, …], {n1, n2, …}] solves a partial recurrence equation. 

The RSolve command can compute a solution to a difference equation (given initial values):

RSolve[{a[n + 1] ⩵ 0.8 * a[n], a[0] ⩵ 1}, a[n], n]

a[n] → 1. × 1.25-1. n

RSolve[{a[n + 1] ⩵ r * a[n] + 1, a[0] ⩵ 1}, a[n], n]

a[n] →
-1 + r1+n

-1 + r


Implicit Functions
Under suitable conditions, the expression g(x, y) = 0 implicitly defines y as a function of x (at least

locally). However it may not be possible to determine an explicit function f such that y = f (x). Neverthe-

less, we can analyze the implicit relationship. For example, we can use ContourPlot (which replaces the

old ImplicitPlot) to plot the implicit relationship.

ContourPlot[x^3 + y^3 ⩵ x y, {x, -1, 1}, {y, -1, 1}, ImageSize → 300]

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

166 mathematica_intro.nb

eqn = x^3 - 5 x^2 ⩵ 2 - 6 x

solns = Solve[eqn, x]

-5 x2 + x3 ⩵ 2 - 6 x

{x → 1}, x → 2 - 2 , x → 2 + 2 

eq02 = x3 + y3 ⩵ x * y && y ⩵ x

solns02 = Solve[eq02, {x, y}]

x3 + y3 ⩵ x y && y ⩵ x

{x → 0, y → 0}, x →
1

2
, y →

1

2


? Solve
Info-55387a0c-7bb1-4c92-87ae-107e083c80ad

Solve[expr, vars] attempts to solve the system expr of equations or inequalities for the variables vars.

Solve[expr, vars, dom] solves over the domain dom. Common choices of dom are Reals, Integers, and Complexes. 

y = 10 - (x - 5)2

y' = D[y, x]

FindRoot[y' ⩵ 0, {x, 4}]

xmax = x /. %

ymax = y /. %%

10 - (-5 + x)2

-2 (-5 + x)

{x → 5.}

5.

10.

? FindRoot
Info-2c8ed1fa-2c15-4901-8123-62edcfd33175

FindRoot[f , {x, x0}] searches for a numerical root of f , starting from the point x = x0.

FindRoot[lhs == rhs, {x, x0}] searches for a numerical solution to the equation lhs == rhs.

FindRoot[{ f1, f2, …}, {{x, x0}, {y, y0}, …}] searches for a simultaneous numerical root of all the fi.

FindRoot[{eqn1, eqn2, …}, {{x, x0}, {y, y0}, …}] searches for a numerical solution to the simultaneous equations eqni. 

Integration
Mathematica can readily find many antiderivatives with the Integrate command. It returns the antideriva-

tive with a zero constant of integration.

mathematica_intro.nb 167

Integrate1  x, x

Log[x]

It is even possible to include undefined symbols in your integrand:

Integratexn, x

x1+n

1 + n

You can give your integrals a more traditional look by using the int and dd keyboard shortcuts.

 xn ⅆx

x1+n

1 + n

Mathematica returns this result even though it fails at n = -1. This is intentional, but it means you cannot

treat the answer mechanically.

If you use this traditional format and your integrand has multiple terms, you will need to put it in parenthe-

ses, like this:

 1 - x ⅆx

x -
x2

2

The integrate command does not isolate its arguments from global assignments. It is good practice to

Clear your integration variables before attempting an integration.

x = 3; Integrate[x, x]

Clear[x]; Integrate[x, x]

Integrate::ilim : Invalid integration variable or limit(s) in 3. 

 3 ⅆ3

x2

2

Remember that, by default, variables take on complex values in Mathematica so the results sometimes

look “needlessly” complex. When appropriate, you may be able to produce simpler results by restricting

your variables to the real numbers. Here is an example from Torrence and Torrence (p.224), which

reflects Mathematica’s choice of principle square root.

168 mathematica_intro.nb

Integrate 1 + x22 , x

Integrate 1 + x22 , x, Assumptions → x ∈ Reals

x 1 + x22 3 + x2

3 1 + x2

x +
x3

3

Riemann Sums

fleft[f_, {x_, a_, b_}] := N[f /. x → a];

fmid[f_, {x_, a_, b_}] := Nf /. x → (a + b)  2;

fright[f_, {x_, a_, b_}] := N[f /. x → b];

Sample[f_, {x_, xl_, xr_}, type_] :=

{fleft[f, {x, xl, xr}], fmid[f, {x, xl, xr}], fright[f, {x, xl, xr}] }[[type]];

rectCoords[a_, b_, h_] := {{a, 0}, {b, h}};

IsReal[x_] := Module[{}, If[! NumericQ[x] || Im[x] ≠ 0,

Throw["One or more samples are outside the domain."]];

x];

FunctionF[x_] := x - 1, x^2 - 1, x^3 - 1, Log[x + 1],

1 - x^2, Abs[x - 2], Cos[x], Sqrt[Abs[x - 1]];

ClearAll[FunctionF]

FunctionF = Functionx,

x - 1, x^2 - 1, x^3 - 1, Log[x + 1], 1 - x^2, Abs[x - 2], Cos[x], Sqrt[Abs[x - 1]];

FunctionText = "x - 1", "x2 - 1", "x3 - 1", "log(x + 1)", "(1 - x)
2",

" x - 2 ", "cos(x)", "SqrtBox[\(\(\(\\)\(x\)\)-1\)]";

FunctionButtons = Map[#[[1]] → #[[2]] &,

Transpose[{Range[Length[FunctionText]], FunctionText}]];

mathematica_intro.nb 169

(* based on code by Ed Pegg http://demonstrations.wolfram.com/RiemannSums/ *)

riemannBlocks[f_, {x_, a_, b_, n_}, height_] := Plotf, {x, a, b}, Prolog → Table

{{GrayLevel[0.9], EdgeForm[Thin], Rectangle @@ #1}} &[xl = a + i * ((b - a) / n);

xr = xl + (b - a) / n;

(rectCoords[xl, xr, Sample[f, {x, xl, xr}, height]])],

{i, 0, n - 1},

ImagePadding → {{25, 25}, {25, 50}},

PlotLabel →

"estimated area = " <> ToStringNumberForm(b - a) * SumIsRealSamplef,

x, a + i * ((b - a) / n), a + i + 1 * ((b - a) / n), height, {i, 0, n - 1} 

n, {7, 4}, NumberPadding → {"", "0"}

<> "\n" <> "actual area = " <> ToString[NumberForm[

Check[Chop[NIntegrate[f, {x, a, b}, AccuracyGoal → 12]], I],

{7, 4}, NumberPadding → {"", "0"}]]

Manipulate[riemannBlocks[FunctionF[x][[$idf]], {x, 0, 5, blocks}, type],

{{blocks, 10, "number of rectangles"}, 4, 70, 1, Appearance → "Labeled"},

{{type, 2, "height"}, {1 → "left", 2 → "midpoint", 3 → "right"}},

{{$idf, 4, "function"}, FunctionButtons, ControlType → Setter},

SaveDefinitions → True]

number of rectangles 10

height left midpoint right

function x - 1 x2 - 1 x3 - 1 log(x + 1) (1 - x)2  x - 2  cos(x) SqrtBox[\(\(\(

1 2 3 4 5

0.5

1.0

1.5

estimated area = 5.7591

actual area = 5.7506

170 mathematica_intro.nb

Differential Equations

Univariate Dyanamics

Analytical Solution

DSolve[{y'[x] == α y[x], y[0] == 1}, y[x], x]

DSolve::ivar : 10-(-5+x)2 is not a valid variable. 

DSolve(-2 (-5 + x))[x] ⩵ α 10 - (-5 + x)2[x], 10 - (-5 + x)2[0] ⩵ 1,

10 - (-5 + x)2[x], x

Graphical Illustration

(* provide an empty list to hold points *)

pts = {};

(* function for updating pts *)

ptupdate[t_, y_] := AppendTo[pts, {t, y}]; Pause[0.05]

(* use Dynamic so pt updating causes ListPlot to revaluate *)

Dynamic[

ListPlot[pts, PlotRange → {{0, 2 * Pi}, {0, 7}}, AxesLabel → {"time", "value"}]]

(* our ODE *)

eq = y''[t] ⩵ Cos[t];

(* solve our ode,use EvaluationMonitor to catch points *)

sol = NDSolve[{eq, y[0] ⩵ 1, y'[0] ⩵ 1},

y[t], {t, 0, 2 * Pi}, EvaluationMonitor ⧴ ptupdate[t, y[t]]];

0 1 2 3 4 5 6
time0

1

2

3

4

5

6

7
value

NDSolve::dsfun : 10-(-5+x)2[t] cannot be used as a function. 

mathematica_intro.nb 171

Coupled System

Consider the coupled system of differential equations

x

1 = a11 x1 + a12 x2

x

2 = a21 x1 + a22 x2

We can write this as

x

1

x

2

=
a11 a12

a21 a22

x1

x2

or x

= A x where aij are the constant coefficients of a matrix A.

Naturally, the behavior of this system depends on the coefficients. Here are some illustrations.

Clear[x1, x2]

(* a stable node (vector and stream plot) *)

{VectorPlot[{{-1, 0}, {0, -1}}.{x1, x2}, {x1, -3, 3}, {x2, -3, 3},

VectorColorFunction → "Rainbow", ImageSize → Small],

StreamPlot[{{-1, 0}, {0, -1}}.{x1, x2},

{x1, -3, 3}, {x2, -3, 3}, ImageSize → Small]}



-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

,

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3



(* an unstable node (vector and stream plot) *)

{VectorPlot[{{1, 0}, {0, 1}}.{x1, x2}, {x1, -3, 3}, {x2, -3, 3},

VectorColorFunction → "Rainbow", ImageSize → Small],

StreamPlot[{{1, 0}, {0, 1}}.{x1, x2}, {x1, -3, 3}, {x2, -3, 3}, ImageSize → Small]}



-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

,

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3



172 mathematica_intro.nb

(* saddle points *)

{

StreamPlot[{{0, -1}, {-1, 0}}.{x1, x2}, {x1, -3, 3}, {x2, -3, 3},

StreamColorFunction → "Rainbow", StreamStyle → {Thin}, ImageSize → Small],

StreamPlot[{{0, 1}, {1, 0}}.{x1, x2}, {x1, -3, 3}, {x2, -3, 3},

StreamColorFunction → "Rainbow", StreamStyle → {Thin}, ImageSize → Small]

}



-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

,

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3



(* stable and unstable focus points ("spiral points") *)

{

StreamPlot[{{-0.5, 0.5}, {-1, 0}}.{x1, x2}, {x1, -3, 3}, {x2, -3, 3},

StreamColorFunction → "Rainbow", StreamStyle → {Thin}, ImageSize → Small],

StreamPlot[{{0.5, 0.5}, {-1, 0}}.{x1, x2}, {x1, -3, 3}, {x2, -3, 3},

StreamColorFunction → "Rainbow", StreamStyle → {Thin}, ImageSize → Small]

}



-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

,

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3



Here is an equivalent representation of the system, using differential operator notation.

a11 - D a12

a21 a22 - D

x1

x2
= 0

Recall that the eigenvalues λ1 and λ2 of A are the roots of the quadratic equation det(A - λ I) = 0 and the

corresponding eigenvectors v solve the equation (A - λ I) v = 0.

a11 - λ a12

a21 a22 - λ

v1

v2
= 0

Note the parallels in the previous two equations!

mathematica_intro.nb 173

charpoly = Det[{{a11 - λ, a12}, {a21, a22 - λ}}];

Collect[charpoly, λ]

Solve[charpoly ⩵ 0, λ]

-a12 a21 + a11 a22 + (-a11 - a22) λ + λ2

λ →
1

2
a11 + a22 -√a112 + 4 a12 a21 - 2 a11 a22 + a222,

λ →
1

2
a11 + a22 +√a112 + 4 a12 a21 - 2 a11 a22 + a222

Depending on the discriminant, the λ can be real or complex. The resulting solution will have the form

x = eλ1 t v1 + eλ2 t v2 where λi are the eigenvalues of the systems and vi are the corresponding

eigenvectors.

Eigenvectors[{{a11, a12}, {a21, a22}}]

-
1

2 a21
-a11 + a22 +√a112 + 4 a12 a21 - 2 a11 a22 + a222, 1,

-
1

2 a21
-a11 + a22 -√a112 + 4 a12 a21 - 2 a11 a22 + a222, 1

We can get the eigensystem of eigenvalues and eigenvectors all at one go.

Eigensystem[{{a11, a12}, {a21, a22}}]


1

2
a11 + a22 -√a112 + 4 a12 a21 - 2 a11 a22 + a222,

1

2
a11 + a22 +√a112 + 4 a12 a21 - 2 a11 a22 + a222,

-
1

2 a21
-a11 + a22 +√a112 + 4 a12 a21 - 2 a11 a22 + a222, 1,

-
1

2 a21
-a11 + a22 -√a112 + 4 a12 a21 - 2 a11 a22 + a222, 1

Let us plot the system's direction field and phase portrait. In this example, you can adjust the constants

in the equations to discover both real and complex solutions. Using Euler's formula ei t = cos(t) + i sin(t) ,

the solutions take the form x = c1 u(t) + c2 w(t) . Since the Wronskian is never zero, it follows that u (t)

and w (t) constitute a fundamental set of (real-valued) solutions to the system of equations.

174 mathematica_intro.nb

Manipulate(* Based on a Mathematica demonstration by Steven Wilkerson. *)

Module{ae, vals, vecs, vecplot, streamplot},

ae = 
a11n a12n
a21n a22n

;

{vals, vecs} = Eigensystem[ae];

lplot = ListLinePlot[

{{{Re[vals[[1]]], Im[vals[[1]]]}}, {{Re[vals[[2]]], Im[vals[[2]]]}}},

PlotMarkers → {"●", "●"}, PlotLabel → "Eigenvalues", AxesLabel → {"Re", "Im"},

AxesOrigin → Automatic, PlotRange → {{-6, 6}, {-3, 3}}, ImageSize → {150, 100}];

vecplot = VectorPlot[ae.{x1, x2}, {x1, -3., 3.}, {x2, -3., 3.},

VectorPoints → ControlActive[4, 15], VectorColorFunction → "Rainbow"];

streamplot = StreamPlot[ae.{x1, x2}, {x1, -3, 3}, {x2, -3, 3}, Axes → True,

StreamStyle → {Thick, Orange}, StreamPoints → ControlActive[2, 8]];

Show{vecplot, streamplot}, ImageSize → {400, 400}, ImagePadding → 20,

PlotLabel → PaneStyleHoldForm x1
x2
' ⩵ 

a11 a12
a21 a22

. x1
x2
 /.

{a11 → a11n, a12 → a12n, a21 → a21n, a22 → a22n},

ImageSize → {400, 50}, Alignment → Center,

a11n, -1  2, "a11", -3, 3, 1  4, Appearance → "Labeled", ImageSize → Tiny,

{a12n, 1, "a12"}, -3, 3, 1  4, Appearance → "Labeled", ImageSize → Tiny,

{a21n, -1, "a21"}, -3, 3, 1  4, Appearance → "Labeled", ImageSize → Tiny,

a22n, -1  2, "a22", -3, 3, 1  4, Appearance → "Labeled", ImageSize → Tiny,

Delimiter,

Dynamic[Show[lplot]],

ControlPlacement → Left, Alignment → Center,

TrackedSymbols ⧴ {a11n, a12n, a21n, a22n},

SynchronousUpdating → False, ContinuousAction → False

mathematica_intro.nb 175

a11 - 1
2

a12 1

a21 -1

a22 - 1
2

●●

●●-6 -4 -2 2 4 6
Re

-3
-2
-1

1
2
3
Im

Eigenvalues

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3


x1

x2

′


-

1

2
1

-1 -
1

2

. x1

x2


Solving Equations
The output from an equation solution may initially look needlessly complicated.

soln01 = Solve[x + 2 ⩵ 4]

soln02 = Solvex2 - x == 2

{{x → 2}}

{{x → -1}, {x → 2}}

x /. soln02

{-1, 2}

176 mathematica_intro.nb

Clear[x, y, z] (* example by Bob Hanlon *)

f[x_, y_, z_] := 3 x^2 + 2 y - 7 z;

g[x_, y_, z_] := 2 x - 6 y^2 + 9 z;

eqns = {f[x, y, z] ⩵ 0, g[x, y, z] ⩵ 0};

soln = Solve[eqns, {y, z}]

ParametricPlot[Evaluate[{z, y} /. soln], {x, -5, 5}, AxesLabel → {z, y}]

ContourPlot3D[Evaluate[eqns], {z, -.2, 12},

{x, -5, 5}, {y, -4, 4.25}, AxesLabel → {z, x, y}]

y →
1

42
9 - 3 27 + 196 x + 378 x2 , z →

1

147
9 + 63 x2 - 3 27 + 196 x + 378 x2 ,

y →
1

42
9 + 3 27 + 196 x + 378 x2 , z →

1

147
9 + 63 x2 + 3 27 + 196 x + 378 x2 

2 4 6 8 10 12
z

-4

-2

2

4

y

mathematica_intro.nb 177

Linear Algebra

Gaussian Elimination

We begin with a system Ax = b, where we wish to solve for x.

mA = {{1, 2, 3}, {2, 2, 3}, {3, 2, 1}};

mb = {{14}, {15}, {10}};

(mA // MatrixForm).x ⩵ (mb // MatrixForm)

mx = {{1}, {2}, {3}}

mA.mx

1 2 3
2 2 3
3 2 1

.x ⩵

14
15
10

{{1}, {2}, {3}}

{{14}, {15}, {10}}

Create the “augmented matrix” [A b].

mAx = ArrayFlatten[{{mA, mb}}];

mAx // MatrixForm

1 2 3 14
2 2 3 15
3 2 1 10

178 mathematica_intro.nb

We will consider a manual row reduction.

Eigenvalues and Eigenvectors

Given a matrix A, and eigenvalue is a scalar λ such that the matrix (A - λI) is singular. We can find such

a scalar by solving the characteristic equation A - λI = 0. For example, consider the matrix

A = 
4 -1
-3 2

 ⇒ A - λI = 
4 - λ -1
-3 2 - λ



The characteristic polynomial is A - λI , which is λ2 - 6 λ + 5. This is just an ordinary polynomial in λ.

the characteristic equation λ2 - 6 λ + 5 = 0. Applying the quadratic equation, we get solutions

λ1, λ2 = 1, 5. We can use Mathematica to implement exactly these steps.

mA = {{4, -1}, {-3, 2}}

mL = mA - λ * IdentityMatrix[2]

charpoly = Det[mL]

soln = Solve[charpoly == 0, λ]

{{4, -1}, {-3, 2}}

{{4 - λ, -1}, {-3, 2 - λ}}

5 - 6 λ + λ2

{{λ → 1}, {λ → 5}}

Mathematica also offers some special commands that allow us to proceed more concisely.

CharacteristicPolynomial[mA, λ]

Eigenvalues[mA]

5 - 6 λ + λ2

{5, 1}

With each eigenvalue λ of a matrix A, we can associate an eigenvector v, such that

Av = λv

In other words, premultiplying A times one of its eigenvectors produces the same outcome as scaling

that vector by the associated eigenvalue. Clearly if v is an eigenvector, so is any nonzero scalar multiple

of v. Eigenvectors are not unique.

mL1 = mL /. soln[[1]]; mL2 = mL /. soln[[2]];

Solve[mL1.{{x1}, {x2}} ⩵ 0, {x1, x2}]

Solve::svars : Equations may not give solutions for all "solve" variables. 

{{x2 → 3 x1}}

mathematica_intro.nb 179

Solve[mL1.{{x1}, {x2}} ⩵ 0, {x1, x2}] /. {x1 → 1}

Solve[mL2.{{x1}, {x2}} ⩵ 0, {x1, x2}] /. {x1 → 1}

Solve::svars : Equations may not give solutions for all "solve" variables. 

{{x2 → 3}}

Solve::svars : Equations may not give solutions for all "solve" variables. 

{{x2 → -1}}

Once again, Mathematica offers some specialized commands for exploring eigensystems. The Eigenvec-

tors command produces eigenvectors (naturally enough), while the Eigensystem command returns both

the eigenvalues and associated eigenvectors.

Clear[λ]

mB = 2 * {{1, 0, 2}, {0, 5, 0}, {3, 0, 2}};

mB // MatrixForm

cpB = CharacteristicPolynomial[mB, λ]

m1 = mB + 2 * IdentityMatrix[3]

m1 // MatrixForm

Solve[m1.{x1, x2, x3} ⩵ 0, {x1, x2, x3}]

Factor[cpB]

Eigensystem[mB]

evec = {{1}, {0}, {-1}}

mB.evec ⩵ -1 * evec

2 0 4
0 10 0
6 0 4

-160 - 44 λ + 16 λ2 - λ3

{{4, 0, 4}, {0, 12, 0}, {6, 0, 6}}

4 0 4
0 12 0
6 0 6

Solve::svars : Equations may not give solutions for all "solve" variables. 

{{x2 → 0, x3 → -x1}}

-(-10 + λ) (-8 + λ) (2 + λ)

{{10, 8, -2}, {{0, 1, 0}, {2, 0, 3}, {-1, 0, 1}}}

{{1}, {0}, {-1}}

False

Eigenvectors[mA]

Eigensystem[mA]

{{-1, 1}, {1, 3}}

{{5, 1}, {{-1, 1}, {1, 3}}}

180 mathematica_intro.nb

mP = {{1, 1}, {3, -1}}

Inverse[mP].mA.mP

{{1, 1}, {3, -1}}

{{1, 0}, {0, 5}}

External Data

Writing CSV Files

We can write a matrix of data to a CSV file with the Export command.

mA = RandomInteger[10, {5, 2}];

Export["c:/temp/temp.csv", mA, "CSV", "TableHeadings" → {"col1", "col2"}]

c:/temp/temp.csv

Reading CSV Files

Similarly, data can be read from a CSV file with Import. We can use the “HeaderLines” option to strip

initial lines.

Import["c:/temp/temp.csv"] // Grid

Import["c:/temp/temp.csv", "HeaderLines" → 1]

col1 col2
5 1
5 2
3 0
7 5
1 7

{{5, 1}, {5, 2}, {3, 0}, {7, 5}, {1, 7}}

We will usually use Import to read external data, but when we have a single series (or complicated

formats) we may want to use ReadList..

ReadList["c:/temp/temp.csv", "Record"]

{col1,col2, 5,1, 5,2, 3,0, 7,5, 1,7}

mathematica_intro.nb 181

Data from the Web

unrate = Import[

"http://research.stlouisfed.org/fred2/series/UNRATE/downloaddata/UNRATE.csv"];

Grid[unrate[[1 ;; 10]]]

DateListPlot[Rest[unrate]]

DATE VALUE
1948-01-01 3.4
1948-02-01 3.8
1948-03-01 4.
1948-04-01 3.9
1948-05-01 3.5
1948-06-01 3.6
1948-07-01 3.6
1948-08-01 3.9
1948-09-01 3.8

1960 1980 2000
0

2

4

6

8

10

Programming in Mathematica

Pattern Matching
Mathematica makes heavy use of patterns and pattern matching. Here we provide a basic introduction.

Useful resources:

http://reference.wolfram.com/mathematica/guide/Patterns.html

Basic Patterns

A blank is a pattern that can match any Mathematica expression. It can be written as `Blank[]` or as an

underscore. `Blank` accepts one optional argument, which we may use to restrict the match by specify-

ing the type of head the expression must have. Use `MatchQ` to see if an expression is matched by a

pattern.

182 mathematica_intro.nb

_ // FullForm

MatchQ[2.5, _]

_Integer // FullForm

MatchQ[2.5, _Integer]

Blank[]

True

Blank[Integer]

False

We can also test for satisfaction of a condition, such as positivity, with `PatternTest`, which from a

pattern `p` and a condition `c` produces a pattern that matches and expression when `p` matches and

`c` also evaluates the expression to True. (A shorthand is to follow a pattern with a question mark and

the test.)

_?Positive // FullForm

MatchQ[2.5, _?Positive]

_Integer?Positive // FullForm

MatchQ[2.5, _Integer?Positive]

MatchQ[3, PatternTest[_Integer, x 0 < x < 5]]

PatternTest[Blank[], Positive]

True

PatternTest[Blank[Integer], Positive]

False

True

Basic Pattern Matching

The simplest pattern object is `Blank[]`, which matches any expression. Mathematica allows a single

underscore as a synonym for `Blank[]`, and this convenient shorthand is almost always prefered. We

can use `MatchQ` to query whether an expression is matched by a pattern object.

MatchQ[what + ever, _] (* matches, because Blank[] matches any expression *)

True

We can provide a head (e.g., object type) as a single argument to `Blank`; for example, `Blank[List]` or

`Blank[Symbol]`.

mathematica_intro.nb 183

MatchQ[what, _Symbol] (* matches *)

MatchQ[what + ever, _Symbol] (* does NOT match; wrong head *)

MatchQ[what + ever, _Plus] (* matches; correct head *)

True

False

True

There are many uses of patterns. One use is to select items from a list. The `Cases` command takes a

list and a pattern and returns the sublist of items matching the pattern.

Clear[a, b]

Cases[{a, b, 1.1, 2.2, 4, 5, Pi}, _Integer]

{4, 5}

We can supplement our pattern matching requirements with a test, using `PatternTest`, for which the

question mark is available as an infix shorthand.

lt20 = PatternTest[_Integer, x x < 20]

MatchQ[10, lt20]

MatchQ[30, lt20]

_Integer?(Function[x, x < 20])

True

False

Naturally we can use the `Cases` command with `PatternTest` as well. (In this case, it would be more

natural to use `Condition`; see the next section.)

lst = Range[30];

Caseslst, _Integer?x x < 20

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}

Suppose we want all the elements that do not match a pattern. For that, we can create our pattern with

`Except`. For example, to get the sublist of non-prime numbers in a list of integers, we could use

`Cases` as follows.

Caseslst, Except_Integer?x x < 20

{20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

Naming Pattern Objects

To bind a name to a pattern, use the `Pattern` command, or a colon as an infix shorthand for it. If the

pattern is a `Blank[]` even the colon can be omitted. In fact, because the colon operator has very low

operator precedence, it can be a good idea to omit it when possible. For example, since `+` has priority

184 mathematica_intro.nb

over `:`, the next two patterns are not the same. (We can of course use parentheses.)

Pattern[x, _] + Pattern[y, _] // FullForm

x : _ + y : _ // FullForm

(x : _) + (y : _) // FullForm

Plus[Pattern[x, Blank[]], Pattern[y, Blank[]]]

Optional[Pattern[x, Plus[y, Blank[]]], Blank[]]

Plus[Pattern[x, Blank[]], Pattern[y, Blank[]]]

Using `Pattern`, we can name patterns for subsequent reference in an expression. There is also a

shortcut notation: just separate the name from the pattern with a colon. In the simplest cases, we are

even allowed to omit the colon.

Pattern[x, _] // FullForm

x : _ // FullForm

x_ // FullForm

Pattern[x, Blank[]]

Pattern[x, Blank[]]

Pattern[x, Blank[]]

However, in more complex cases, we need to be more explicit.

x_Integer?Positive // FullForm (* uh oh ... *)

x : _Integer?Positive // FullForm (* fixed! *)

x : (_Integer?Positive) // FullForm (* fixed! *)

PatternTest[Pattern[x, Blank[Integer]], Positive]

Pattern[x, PatternTest[Blank[Integer], Positive]]

Pattern[x, PatternTest[Blank[Integer], Positive]]

By naming our patterns, we are able to reference them subsequently uses. For example, to condition-

ally apply a pattern use the `Condition` command or its `/;` infix shorthand.

x_ /; x > 0 // FullForm

Map[MatchQ[#, %] &, {-1, 0, 1}]

Condition[Pattern[x, Blank[]], Greater[x, 0]]

{False, False, True}

Cases[RandomInteger[{0, 100}, 20], x_ /; x < 20]

{12, 18, 18, 11, 2}

We use patterns with delayed evaluation to define functions, possibly with type checking and default

values.

mathematica_intro.nb 185

ClearAll[f, g, h]

f[x : _] := x * x

f[2.5]

g[x : _Integer : 0] := x * x

g[]

g[2.5]

6.25

0

g[2.5]

Note the inclusion of a second colon followed by a default value. Even this simple cases has a subtlety:

the default is not applied if the argument does not match.

Pattern-based function definitions can also make use of `Condition`:

ClearAll[f, g]

f[x_ /; x > 0] := x * x

Map[f, {-1, 0, 1}]

g[x_] := x * x /; x > 0

Map[g, {-1, 0, 1}]

{f[-1], f[0], 1}

{g[-1], g[0], 1}

Use `HoldPattern` for Sensible Matching

Even two different `Blank[]` patterns can stand for different things, in Mathematica they evaluate as

equal.

Blank[] ⩵ Blank[]

True

Thus for example, Mathematica is perfectly willing to add or multiply them.

{_ + _, _ * _}

2 _, _2

This creates a problem for pattern matching, which can arise if evaluation of a pattern produces an

unexpected pattern. For example,

Clear[a, b]

MatchQ[a + b, _ + _]

False

If we use `Trace` we discover why the match failed:

186 mathematica_intro.nb

Trace[MatchQ[a + b, _ + _]]

{{_ + _, 2 _}, MatchQ[a + b, 2 _], False}

As a solution for such problems, Mathematica provides `HoldPattern`. We use `HoldPattern` to keep

our pattern in unevaluated form.

MatchQ[a + b, HoldPattern[_ + _]]

True

Rules and Replacement

Mathematica allows the use of pattern matching with replacement rules to transform expressions. A

rule is created with the `Rule` command or its right-arrow inflix shorthand.

rule20 = Rule[x, 20]

rule30 = x → 30

x → 20

x → 30

We can apply rules using the `Replace`.

Clear[x, y, z]

Replace[x, rule20]

Replace[x, rule30]

20

30

The simple replace command works on whole expressions, not subexpressions. For example, the

following does not produce a replacement.

Replace[x + y, x → x1 + x2]

x + y

For this reason, we usually use `ReplaceAll` or its `/.` infix shorthand. This is usually more useful: it will

attempt to tranform each subpart of an expression.

Clear[x, x1, x2, x, y, z]

ReplaceAll[x + y + zx, x → x1 + x2]

x + y + zx /. {x → x1 + x2}

x1 + x2 + y + zx1+x2

x1 + x2 + y + zx1+x2

Replacement rules can be used to evaluate expressions for particular values of the symbols without

assigning new values to the global symbols.

mathematica_intro.nb 187

x + y + zx /. {x → 1, y → 2, z → 3}

6

If you wish to set a global value for a varaible x, you make an assignment, like x = 1. Then Mathematica

will replace your variable x with the value 1 everywhere that it occurs. Sometimes it is more useful to

replace x just in a particular expression. Mathematica lets you do this in a number of ways with fine

control. Here we illustrate the most common case: the use of ReplaceAll, with the common slash-dot

notation.

Clear[x]

x /. x → 1 (* replace x with 1 in this expression only *)

x /. {x → 1, x → 2} (* only the first match will be used *)

x /. {{x → 1}, {x → 2}}

(* a list substitution lists → a list of expression values *)

x /. Table[{x → i}, {i, 1, 10}] (* same idea *)

x (* none of this changes the value of x *)

1

1

{1, 2}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

x

Rules for rewriting expressions are fundamental to Mathematica. We create a rule with the `Rule`

command or its `->` shorthand. We can then use `ReplaceAll` (or its `/.` infix shorthand) to transform an

expression using our rule.

Clear[a, b]

rule01 = Rule[a, b]

ReplaceAll[a * a, rule01]

a * a /. rule01

a → b

b2

b2

When we use `Rule` to create a rule, the replacement expression is evaluated before the rule is created.

188 mathematica_intro.nb

x = 2

rule02 = a → x

x = 3

a * a /. rule02

2

a → 2

3

4

If we do not want the replacement expression to be evaluated until after the substitution has taken

place, we instead use `RuleDelayed` (or its `:>` shorthand).

x = 2

rule02 = a :> x

x = 3

a * a /. rule02

2

a ⧴ x

3

9

Control Flow

Traditional Structures

Branching

As its basic branching construct, Mathematica provides the `If` command, which conditionally returns a

value. The `If` command takes three arguments: a boolean test, the expressions to evaluate if the test is

True, and the expression to evaluate if the test is False. (Important: the last two arguments are only

evaluated as needed.)

If[True, "it's true", "it's false"]

If[False, "it's true", "it's false"]

it's true

it's false

If the third argument is omitted but the test is False, then `If` returns `Null`.

mathematica_intro.nb 189

FullForm[If[False, "it's true"]]

Null

Unusually, Mathematica also allows a fourth argument, which is returned if the test value is not boolean.

Note that in contrast to some other languages, `0` and `1` are not treated as boolean.

If[1, 2, 3, 4]

4

A nice example from Torrence and Torrence:

fmtTable = Table[If[PrimeQ[n], Style[n, {Bold, Blue}], n], {n, 100}]

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,

62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,

82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100}

If you need to conditionally choose between multiple expressions (not just two), Mathematica also

provides the `Which` and `Switch` commands.

Looping

The basic looping commands are `Do`, `While`, and `For`. Here we compute 5! as an illustration.

The first argument to Do can be a compound expression, and `Do` can use multiple iterators, but here

we stick with the simplest use.

fac5 = 1; Do[fac5 *= k, {k, 1, 5}]; fac5

120

It is a very nice feature of `Do` that the iterator can be over any list of values.

fac5 = 1; Do[fac5 *= k, {k, Range[5]}]; fac5

120

Note that the value of a compound expression, produced by separating expressions with semicolons, is

the value of the last expression. Next, we generalize this into a function.

Clear[nfac];

nfac[n_] := facn = 1; Do[facn *= k, {k, 1, n}]; facn

nfac[5]

120

The While command repeatedly evaluates its second argument as long as its first argument evaluates

to True.

n = 5; fac5 = 1; While[n > 0, fac5 *= n--]; fac5

120

190 mathematica_intro.nb

The `For` command accepts four arguments: an initialization, a test that controls the loop, an increment

statement, and the loop body. Note that in contrast with the `for` statement in C or C++, the arguments

to `For` are separated by commas (not semicolons).

fac5 = 1; For[n = 1, n ≤ 5, n++, fac5 *= n]

fac5

120

Advanced: `Do` is a dynamic “Block” scoping construct, so although it localizes its iterator variable, it

does so dynamically. Consider the following example from Shifrin. (But please do not use such

constructs!)

Clear[a, i]

a := i * i

Do[Print[a], {i, 5}]

1

4

9

16

25

Indexed Variables

Unassigned Indexed Variables

Sometimes we need to create many names variables. For example, we may need to construct a large

equation system with variables that are names but not assigned values. We can use indexed variables

for this. Here is a small example.

ClearAll[x]

Solve[{x[1] + 3 x[2] ⩵ 7 && 3 x[1] - 2 x[2] ⩵ -1}, {x[1], x[2]}]

{{x[1] → 1, x[2] → 2}}

If we need many such variables we can easily construct them.

ClearAll[x]

vars = Array[x, 10]

{x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10]}

When solving nonlinear systems (e.g., with `FindRoot`), we may need to associate initial values with

these variables, leaving the variables with no assigned values.

mathematica_intro.nb 191

init = Map[{#, 0} &, vars]

{{x[1], 0}, {x[2], 0}, {x[3], 0}, {x[4], 0}, {x[5], 0},

{x[6], 0}, {x[7], 0}, {x[8], 0}, {x[9], 0}, {x[10], 0}}

mA = RandomInteger[100, {5, 5}]

x = Range[5]

b = mA.x

Clear[x]

xvars = Array[x, 5]

Solve[mA.xvars ⩵ b, xvars]

DownValues[xvars]

{{21, 75, 21, 69, 39}, {56, 18, 25, 88, 2},

{54, 67, 28, 26, 52}, {86, 15, 1, 68, 24}, {78, 13, 87, 87, 16}}

{1, 2, 3, 4, 5}

{705, 529, 636, 511, 793}

{x[1], x[2], x[3], x[4], x[5]}

{{x[1] → 1, x[2] → 2, x[3] → 3, x[4] → 4, x[5] → 5}}

{}

DownValues for Associative Arrays

An indexed variable can be used to create an associative array: we can use an integer as an index, and

we assign a value at each index.

Clear[x]

DownValues[x] (* x has no DownValues *)

x[1] = 0 (* create a DownValue for x *)

DownValues[x] (* x is now an indexed variable; its DownValues is not empty *)

{}

0

{HoldPattern[x[1]] ⧴ 0}

Note that because `Set` has the attribute `HoldFirst`, we have to `Evaluate` vars before we can make

the assignment to the indexed variables. (Otherwise, we would just rebind the name `vars` to a new

value: the array of zeros.)

192 mathematica_intro.nb

Clear[x, xvars]

xvars = Array[x, 5]

Evaluate[xvars] = ConstantArray[0, 5]

DownValues[x]

{x[1], x[2], x[3], x[4], x[5]}

{0, 0, 0, 0, 0}

{HoldPattern[x[1]] ⧴ 0, HoldPattern[x[2]] ⧴ 0,

HoldPattern[x[3]] ⧴ 0, HoldPattern[x[4]] ⧴ 0, HoldPattern[x[5]] ⧴ 0}

One may also use the `Scan` command to do simple initialization.

Clear[x]

data = Range[5];

Scanx[#] = 0 &, Range[5] (* note the parentheses *)

DownValues[x]

{HoldPattern[x[1]] ⧴ 0, HoldPattern[x[2]] ⧴ 0,

HoldPattern[x[3]] ⧴ 0, HoldPattern[x[4]] ⧴ 0, HoldPattern[x[5]] ⧴ 0}

In principle, any expression can be used as an index. In practice, the use of symbols is likely to create

confusion, because indexes are evaluated. Here is a simple example, demonstrating the the results are

generally not what we intended.

Clear[f, x]

f[x] = x * x; (* use the symbol `x` as an index *)

DownValues[f] (* we see we need a literal `f[x]` *)

f[x] (* literal `f[x]` works as expected *)

f[y] (* `f[y]` is unrecognized, so evaluates to self *)

x = 2 (* now `x` will evaluate to 2 *)

f[x] (* `f[2]` is unrecognized! *)

HoldPattern[f[x]] ⧴ x2

x2

f[y]

2

f[2]

In contrast, the use of patterns as indexes can be a very good idea.

DownValues for Function Definition

We can use any pattern to index a variable. If we name the pattern and use delayed assignment

(`SetDelayed`), we can use that name on the right. This gives us another and very useful way to define

mathematica_intro.nb 193

functions.

ClearAll[f, x]

x = 5 (* give `x` a global value *)

f[x_] := x * x (* `x` on the right matches the pattern on the left! *)

DownValues[f] (* we have defined a transformation rule *)

f[x] (* remember, the global `x` evaluates to 5 *)

f[y] (* the symbol `y` will be transformed symbolically *)

5

{HoldPattern[f[x_]] ⧴ x x}

25

y2

Note that when you define functions using pattern matching, that reuse of a name for the function does

not remove the old definition if your new definition uses a new pattern.

Clear[f, x, y]

f[x_] := x * x

f[x_, y_] := x * x + y * y

DownValues[f]

f[2] (* uses first definition *)

f[2, 3] (* uses second definition *)

{HoldPattern[f[x_]] ⧴ x x, HoldPattern[f[x_, y_]] ⧴ x x + y y}

4

13

We can define our functions with any patterns, which allows conditional definitions. For example, we

might want to allow only non-negative inputs to a production function.

Clear[f, x]

f[n_ /; n ≥ 0, k_ /; k ≥ 0] := n0.6 k0.4

f[1, 1]

f[-1, -1] (* not defined *)

1.

f[-1, -1]

As a more useful example, consider defining a function sin(x) /x, which is undefined at 0. We can “plug”

this discontinuity by using conditional matching. Note that even though we define the specific case `f[0]`

after defining the general case, the `DownValues` are re-ordered so that the specific case is tried first.

194 mathematica_intro.nb

