
Tabular Datasets
Social-science data gains utility when stored and shared as a dataset with a well-documented struc-
ture.  This section focuses on one popular dataset structure: a collection of records, where each 
record is a collection of named fields.  Each record effectively associates field identifiers to values.

Abstractly, an associative array is a natural model for a record.  One associative array can represent a 
single record,  with the field identifiers as the keys and the associated data values as values.  For 
example, the following three associations could represent three records in a very simple data set.

I n [ ] : = assoc01 = "first"  "John", "last"  "Doe", "h1"  50, "h2"  30;

assoc02 = "first"  "Jane", "last"  "Doe", "h1"  30, "h2"  50;

assoc03 = "first"  "SR", "last"  "Rossi", "h1"  46, "h2"  45;

Create a small dataset by collecting these three associations into a list named ds.  This list of  records 
is a very simple example of a dataset.  Since the record order is irrelevant and there are no duplicate 
records, this dataset is effectively a set of associations.

I n [ ] : = rows = {assoc01, assoc02, assoc03};

This dataset has a tabular format (or more simply, it is a table) because every record has the same 
fields.  When a dataset has a tabular format, the records are often called rows of the dataset.  More 
concretely, imagine a table with field names at the top and associated values in each row, as in a 
spreadsheet.  This allows a compact representation of the same data, as in the following table.

Ou t [ ] =

Table 1: Dataset Displayed as Table
first last h1 h2

John Doe 50 30

Jane Doe 30 50

SR Rossi 46 45

An earlier discussion of functions emphasized that an association is essentially an enumerated func-
tion.  In this sense, a tabular data can be conceptualized as a collection of enumerated functions.  WL 
provides a variety of commands for accessing and manipulating such a dataset.

Filtering and Recoding

From a given tabular dataset, researchers often extract a smaller dataset comprising only those 
records that satisfy some criterion.  This process corresponds to selective set building, also called 
filtering, or subsetting.  Criterion-based filtering of datasets is a very common need in empirical social 
science.  Given a list of records, the Select command readily performs dataset filtering: we just need 
an appropriate predicate.  This predicate is a boolean-valued function that returns True iff a record 
satisfies our criterion and False otherwise.

For example, suppose that from this list of associations  we wish to keep only those records where the 



h1 and h2 fields sum to less than 90.  Begin this task by implementing an appropriate selector.  The 
following example uses the operator form of Select, which takes a predicate as its argument.  

I n [ ] : = select01 = Select[#h1 + #h2 < 90 &];

Notice how the predicate directly uses the field names.  Recall that when associations that have 
strings as keys, functions operating on these associations can refer by key name to the values.  This is 
the case with the associations in our simple dataset.  Now select01[rows] will subset the data, as 
desired.  The result is once again a list of associations.  In order to produce more visually organized 
output, stack the selected associations with Column.

Ou t [ ] =

Expression Result

select01[rows] //

Column

first  John, last  Doe, h1  50, h2  30

first  Jane, last  Doe, h1  30, h2  50

Next, consider substitutive set building, which is sometimes called transformation or recoding.  The 
Map command is typically adequate to this need.  One may map over the records of a dataset to 
produce a new dataset by transforming each record.  Typically, dataset transformations retain some 
kind of unique record identifier, precluding the creation of exact duplicates.  Since this simple dataset 
is a list of records, the list index is a unique identifier. The list order is retained when Map transforms it.

Once again, functions that transform associations have direct access to the association keys.  For 
example, the following expression defines a function sub01 that accesses three fields of an associa-
tion and then creates a new association.

I n [ ] : = sub01 = "first"  #first, "total"  #h1 + #h2 &;

This facility implies that Map can recode tabular datasets by using easily understood transformations.  
Since this dataset is just a list of associations, Map[sub01,rows] maps the substitution function 
across the dataset and thereby produces a transformed list of associations.

Ou t [ ] =

Expression Result

Map[sub01,rows] //

Column

first  John, total  80

first  Jane, total  80

first  SR, total  91

Queries for Filtering and Recoding

In database terminology, a selective set building or a substitutive set building performs a query, which 
retrieves information from a dataset.  WL correspondingly provides Query for query operations.  
Applying a query to a dataset subsets it or transforms it (or both).  The query syntax is extremely 
flexible, and queries may be complex.

Consider the filtering and recoding examples from the previous subsection.  The query to implement 
the filtering example is Query[select01], while the query to implement the recoding example is 
Query[All,sub01].  Each of these produces a query operator (i.e., a function) that may be applied 
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to a list of associations to produce the specified filtering or recoding.  Applying the first query to the 
dataset produces the same effects as applying the selector, while applying the second query to the 
dataset produces the same result as mapping the transformation over the dataset.  In either case, 
there may seem to be little gain from the new syntax.  However, queries are readily combined, as 
follows.  The query Query[select01,sub01] selects only the records of interest (rather than all of 
them) and then transforms each record.

Ou t [ ] =

Expression Result

Query[select01,sub01][rows] //

Column

first  John, total  80

first  Jane, total  80

As a final example of transforming this particular dataset, consider recoding the data to anonymize 
the scores.  Achieve this by a transformation that drops the two name fields from every record.  Given 
the description, this transformation is perhaps most naturally achieved by means of  KeyDrop.  This 
can be part of a query, but KeyDrop also works directly on a dataset.

Ou t [ ] =

Expression Result

KeyDrop[{"first","last"}][rows] //

Column

h1  50, h2  30

h1  30, h2  50

h1  46, h2  45

As an alternative approach, first characterize set of records to process (here, all of them), and then list 
(by name) the columns to retain: Query[All,{"h1","h2"}][rows] .  Interestingly, it is even 
possible to use Part to select parts of a list of associations: rows[[All,{"h1","h2"}]].  Choose 
the method that seems most communicative for a given problem.

Underpinnings of Query

Query provides a convenient interface for dataset manipulations, and the use of queries is idiomatic 
when working with datasets.  Nevertheless, it can be helpful to recall that Query is just a convenient 
way to apply functions at various levels of the dataset.  To reveal the underlying operations, use the 
Normal command.  The results for Map use its single-argument operator form.  The result for an input 
of two functions is a RightComposition.  Ordinarily, the first function is applied to the dataset after 
the second function is mapped across the records.

Ou t [ ] =

Expression Result

Normal @ Query[f] f

Normal @ Query[All,g] Map[g]

Normal @ Query[f,g] Map[g]/*f

However, there is a remaining subtlety.  A Query classifies its dataset operations as descending or 
ascending. Given a sequence of operations in a query, the descending operations are applied in order 
(at deeper and deeper levels) and then the ascending operations are applied in reverse order at higher 
and higher levels.  Crucially, user-defined functions are ascending, but selection is considered a 
descending operation.  So a selection is applied before the mapping operation.  (See the documenta-
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tion of Query for more details.)  This is desirable, since we generally wish to describe a selection in 
terms of the original dataset.

Ou t [ ] =

Expression Result

Normal @ Query[Select@f,g] Select[f]/*Map[g]

Dataset Objects

This subsection briefly considers a WL data type that can be very similar to a list of associations: the 
Dataset.  It provides the same natural representation of tabular datasets, with additional advantages 
for transformation, selection, and aggregation.  (The Wolfram Language Guide entitled Computation 
with Structured Datasets provides an extended discussion.)

The Dataset command can convert a list of associations into a unified structure that is easily queried 
and manipulated.  In a Mathematica notebook such a dataset has a convenient visual display.

Ou t [ ] =

Expression Result

ds=Dataset[{

assoc01,

assoc02,

assoc03

}]

first last h1 h2

John Doe 50 30

Jane Doe 30 50

SR Rossi 46 45

Such a dataset object is essentially the list of associations, along with a convenient wrapper.  In fact, 
whenever needed, the Normal command can retrieve the list of associations from such a dataset.  
However, dataset objects support a particularly convenient syntax for common data manipulations.

Most often, the creation of a WL dataset begins with an import of data from an external file.  The 
SemanticImport command excels at creating data sets from external data files, such as spreadsheet 
files.  In order to produce a self-contained example, the following illustration uses the closely related 
SemanticImportString command, which operates directly on strings.  Even without additional 
clues, a semantic import determines that the string data is in CSV format.

Ou t [ ] =

Expression Result

SemanticImportString[

"first,last,h1,h2

John,Doe,50,30

Jane,Doe,30,50

Signor,Rossi,46,45"]

first last h1 h2

John Doe 50 30

Jane Doe 30 50

Signor Rossi 46 45

Filtering and Recoding Datasets

The queries used above on a list of associations work just as well on this dataset.  However, when 
applied to a dataset the result is a dataset, which in a notebook has a nice display.  In addition to the 
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obvious syntax select01[ds] query syntax, the dataset object allows ds[select01] as an alterna-
tive query syntax.

Ou t [ ] =

Expression Result

ds[select01]
first last h1 h2

John Doe 50 30

Jane Doe 30 50

This alternative syntax generalizes to other queries.  For example, Query[All,sub01][ds] can be 
more compactly written as ds[All,sub01].

Ou t [ ] =

Expression Result

ds[All,sub01]
first total

John 80

Jane 80

SR 91

Of course, as before, these queries can be readily combined.
Ou t [ ] =

Expression Result

ds[select01,sub01]
first total

John 80

Jane 80

As another example of recoding a dataset, consider the selection of a subset of the fields from every 
record.  First characterize set of records to process (here, all of them), and then list the desired 
columns (by name).  Here instead of applying Query[All,{"h1","h2"}] to the dataset, use 
KeyTake.

Ou t [ ] =

Expression Result

ds[KeyTake[{"h1","h2"}]]
h1 h2

50 30

30 50

46 45

The same strategy can augment records as needed. In this fashion, substitutive set building can add 
fields.  For example, the following function will append to an associations a new key ("total") with a 
value that is the sum of the values associated to the "h1" and "h2" keys.

I n [ ] : = sub02 = Append[#, "total"  #h1 + #h2] &;
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It is quite possible to map this function across the ds dataset object.   When recoding datasets, a more 
idiomatic alternative is to create an equivalent query.  The following example again does this by 
means of the shorthand query syntax; it use sub02 to append a "total" column to the dataset.

Ou t [ ] =

Expression Result

ds[All,sub02]
first last h1 h2 total

John Doe 50 30 80

Jane Doe 30 50 80

SR Rossi 46 45 91

At this point, it is clear that Query is remarkably flexible, but we have only scratched the surface.  For 
example, like any function, a query can apply LinearModelFit to the data in a dataset object, 
although we must first use Values to remove the field names.  Applying Values produces a header-
less rectangular dataset, which essentially wraps a rectangular list of lists rather than a list of associa-
tions.  A simple query can then fit scores on the second homework to scores on the first homework.

Ou t [ ] =

Expression Result

data=Values@ds[All,{"h1","h2"}];

data[LinearModelFit[#, x, x]&]
FittedModel 75.4 - 0.804 x 

Later discussions treat linear regression in more detail.  The Wolfram Language How To entitled 
Perform a Linear Regression provides another useful introduction.

Partitioning and Classification

A partition of a set X is a collection of non-empty, pairwise-disjoint subsets whose union is X.  Each 
subset is a block.  Recall that a collection of sets is pairwise-disjoint if the intersection of any pair of the 
sets is empty, so different blocks of a partition have no elements in common.  The simplest interesting 
partition is a two-block partition.  Two-block partitions are naturally formed by dividing set elements 
into those that satisfy a certain property and those that do not.  Whenever selective set building picks 
a subset of items that satisfy some predicate, one may produce a corresponding partition by addition-
ally creating the complement of that subset.

Since a list without duplicates nicely represents a finite set, partitioning such a list corresponds to 
partitioning a set.  The following example uses TakeDrop and Partition to produce some arbitrary 
blocks from a small list of numbers.  The basic form of the TakeDrop command takes as arguments a 
list and an initial sequence length.  It partitions the list into two sublists: an initial sequence, and the 
remainder of the list.  The second argument can alternatively be a list of two integers, which specify 
the start index and stop index of a sublist to take.  The Partition command offers a different 
approach to partitioning: it can partition a list into sequential sublists of a common length.  The 
following example uses the two-argument form of Partition, where the first argument is a list and 
the second argument is the length of the sublists.  In order to avoid discarding terminal elements 
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when the list is not evenly divisible, use the UpTo command in the second argument.
Ou t [ ] =

Expression Result

n7=Range[7] {1, 2, 3, 4, 5, 6, 7}

TakeDrop[n7,3] {{1, 2, 3}, {4, 5, 6, 7}}

TakeDrop[n7,{3,5}] {{3, 4, 5}, {1, 2, 6, 7}}

Partition[n7,UpTo[3]] {{1, 2, 3}, {4, 5, 6}, {7}}

This example shows that TakeDrop or Partition can produce a list of lists that represents a particu-
lar set partition.  However, data science more commonly needs a partition that is based on properties 
of the elements.  Such a partition is called a categorization or a classification of the elements, where 
the classification typically derives from a classifier function.

Classification with GroupBy

The simplest two-argument form of the GroupBy command accepts as arguments a list to be classi-
fied and a classifier function.  The result is an  association from categories in the range of the classifier 
function to a list of elements for each category that is present.  This is a one-way classification of the 
data.  For example, a set of households might be classified by household size.

The following functions serve as classifiers on the integers.  The first maps each integer to a single 
classification, either "d2" or "¬d2”.  The second maps each integer to a single classification, either 
"d3" or "¬d3"; this classifies any integer as divisible by 3 or not. The third maps each integer to a 
single classification, either "d4" or "¬d4"; this classifies any integer as divisible by 4 or not.  Each of 
these classifiers can partition a set of integers into two blocks.  These classifications can overlap in 
various ways, as discussed below.

I n [ ] : = div2 = item  If[0  Mod[item, 2], "d2", "¬d2"];

div3 = item  If[0  Mod[item, 3], "d3", "¬d3"];

div4 = item  If[0  Mod[item, 4], "d4", "¬d4"];

When applied to a set of elements, categorization with GroupBy effectively produces the inverse 
relation of the classifier function on a set.  For example, apply the div2 classifier to the first seven 
positive integers, as follows.

Ou t [ ] =

Expression Result

gb2=GroupBy[n7,div2] ¬d2  {1, 3, 5, 7}, d2  {2, 4, 6}

In a Mathematica notebook, applying the Dataset command to the resulting association produces a 
convenient tabular display.

Ou t [ ] =

Expression Result

ds2 = Dataset[gb2]
¬d2 {1, 3, 5, 7}

d2 {2, 4, 6}

The next example is almost identical, but it uses the one argument form of GroupBy.  This produces a 
grouping operator, which can then be applied to a list.  Recall that the at-sign operator is the prefix 
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notation for function application, so GroupBy[div3]@n7 is exactly the same as 
GroupBy[div3][n7].

Ou t [ ] =

Expression Result

Dataset[

GroupBy[div3] @ n7

]

¬d3 {1, 2, 4, 5, 7}

d3 {3, 6}

Partition Π ' is a refinement of partition Π iff every block of Π ' is included in a single block of Π.  That is, 
partition blocks can themselves be partitioned, resulting in a refined partition of the original set.  A 
single classification can partition a dataset, and a second classification can then refine this partition.

It is possible to sequentially refine a partition by mapping a second GroupBy operator across the 
values of an initial grouping.  However, GroupBy supports a simpler syntax: it accepts a list of classi-
fiers that are sequentially applied.  The following example illustrates this nested categorization by 
producing a two-way classification.  The result is a multilevel association: an association whose values 
are in turn associations.  Once again, the Dataset command can produce a convenient tabular 
display of the result.  The outer association keys are used as row headers.  When the inner associa-
tions share keys, as they do here, the Dataset command typically displays these keys as column 
headers.  (Refined control of the display of datasets is beyond the scope of this book, but see below 
for a few hints.)

Ou t [ ] =

Expression Result

ds23 = Dataset[

GroupBy[{div2,div3}] @ n7

]

¬d3 d3

¬d2 {1, 5, 7} {3}

d2 {2, 4} {6}

Block Size as a Dataset Query

Social scientists often care about the sizes of the partition blocks, since these are the frequency 
counts implied by the categorization.  A one-way frequency table displays categorical data as a list of 
categories and their frequency of occurrence in a dataset.  Mapping Length across a one-way catego-
rization produced by GroupBy will produce the information for a one-way frequency table (as an 
association from categories to counts).  However, when working with data set objects, it is more 
natural to produce the length of each block by means of a query.  When constructing the query, use 
the following reasoning: for each category in a one-way categorization, determine the total number of 
items in that category.  This suggests the query Query[All,Length].  Try this out on the previous 
even-odd classification dataset.  In a Mathematica notebook, the result displays as a simple one-way 
table.
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Ou t [ ] =

Expression Result

ds2[All,Length]
¬d2 4

d2 3

The same reasoning applies to the creation of a two-way frequency table, which shows frequency 
counts for each possible pair of classifications.  Recall that a two-way categorization using GroupBy 
creates a multilevel association, which is an association whose values are also associations.  A fre-
quency table reports the number of items for each value of the inner association.  This suggests the 
following query.

I n [ ] : = cts = Query[All, All, Length];

Try this out on the previous two-way classification dataset.  In a Mathematica notebook, the result 
displays the element count for each block of the resulting partition of the dataset.  It is a frequency 
table for data described by two categorical variables, which is often called a two-way table, a two-
dimensional cross-tabulation, or a contingency table.  

Ou t [ ] =

Expression Result

ds23 //cts
¬d3 d3

¬d2 3 1

d2 2 1

Display Issues

The example above produces a nice cross-tabulation display with little effort.  In the presence of 
empty categories, a nice display involves a bit more work.  For example, pick a different secondary 
classifier: divisibility by 4 instead of divisibility by 3.  The result is still a partition of the set, but now 
nothing is listed for the empty category (odd and divisible by 4).  Using the Dataset command to 
produce a convenient categorical display is still acceptable, but the hierarchical display is not as easy 
to decipher as a two-way table.

Ou t [ ] =

Expression Result

ds24=Dataset[

GroupBy[{div2,div4}] @ n7

]

¬d2 ¬d4 {1, 3, 5, 7}

d2 ¬d4 {2, 6}

d4 {4}

In this case, it is possible to produce a display comparable to the previous two-way table by first 
providing a default value for every inner group and then updating it based on the data.  For example, 
adjust the counts by mapping an association providing zero as a default value for the divisible-by-four 
category.  (The default values must come first.)  Technically the resulting categorization is no longer a 
true partition, since one category is empty, but the resulting display is much easier to read.  The 
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following example provides only the single default that this particular case requires.
Ou t [ ] =

Expression Result

ds24[cts][All,<|"d4"->0,#|>&]
d4 ¬d4

¬d2 0 4

d2 1 2

To understand how this works, peer inside the dataset wrapper with the Normal command.  This 
dataset is essentially an association whose values are also associations.  Recall that applying Map to 
an association transforms the values, not the keys.  For example, the key "¬d2" associates to the 
value "¬div4"4.  Applying the default to this value produces "div4"0,"¬div4"4.  
The example does this, using the specialized query syntax for datasets.

As of Mathematica version 13, this kind of control of dataset display remains tricky.  It is affected by 
inferred type information, which is beyond the scope of this book.  Sometimes the above trick fails to 
produce a two-way display rather than a less readable hierarchical display.  An alternative is to use a 
dataset for recoding, filtering, and aggregation, and then subsequently extract the results for use with 
TableForm or Grid.
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