
Datasets
Social scientists often work with datasets that are structured as a collection of records, where each
record consists of multiple fields, and each field has an identifier and a value. Such data is in a tabular

format (or more simply, it is a table). Abstractly, this structure is naturally modeled as a list of associa-
tions, where each association represents a single record, and where the keys of the association are the
field identifiers. This section briefly considers a WL data type that can be very similar to a list of associa-
tions: the Dataset. It provides the same natural representation of tabular datasets, with additional
advantages for transformation, selection, and aggregation. (For more details see the Wolfram Lan-
guage Guide entitled Computation with Structured Datasets.)

Creating Datasets

The Dataset command can turn a list of associations into a unified structure that is easily queried and
manipulated. Such a dataset is essentially just a convenient wrapper around a list of associations.
(When needed, use the Normal command to reverse this process, creating a list of associations from
such a dataset.) As an additional feature, in a Mathematica notebook such a dataset should have a
convenient visual display.

Out[160]=

Expression Result

ds01=Dataset[{

assoc01,

assoc02,

assoc03

}]

first last h1 h2

John Doe 50 30

Jane Doe 30 50

Signor Rossi 46 45

Most often, dataset creation involves import from an external file. The SemanticImport command
excels at creating data sets from external data files, such as CSV files. (The WL documentation provides
extensive details.) In order to produce a self-contained example, the following illustration uses the
closely related SemanticImportString command, which operates directly on strings.

https://reference.wolfram.com/language/guide/ComputationWithStructuredDatasets.html

Out[]=

Expression Result

SemanticImportString[

"first,last,h1,h2

John,Doe,50,30

Jane,Doe,30,50,

Signor,Rossi,46,45"]

first last h1 h2

John Doe 50 30

Jane Doe 30 50

Signor Rossi 46 45

Filtering and Recoding Datasets

Criterion-based filtering of datasets is a very common need. From a given dataset, researchers often
work with a smaller dataset comprising only those records that satisfy some criterion. Recall that this
process is called selective set building, filtering, or subsetting. The Select command can perform
dataset filtering: apply it to a dataset and an appropriate predicate (i.e., a function that returns True iff
a record satisfies our criterion). For example, from data01 keep only those records where the h1 and
h2 fields sum to less than 90. Recalling that when associations that have strings as keys, functions
operating on them can refer by key name to the values, proceed as in the following example. This
illustrates the operator form of Select, which can be particularly convenient when the same criterion
will be used to subset several datasets. (See the documentation for details.) Note that this would work
just well with a list of associations, although the display would not be as nice.

Out[]=

Expression Result

select01=Select[#h1+#h2<90&];

select01[ds01] first last h1 h2

John Doe 50 30

Jane Doe 30 50

Substitutive set building is sometimes called transformation or recoding. For datasets, the Map com-
mand (discussed in Chapter 2) largely covers substitutive set building. One may map over the records
of a dataset to produce a new dataset. Typically, dataset transformations retain some kind of unique
record identifier, precluding the creation of exact duplicates. In a WL dataset, the records are ordered,
and that order is retained after mapping.

Recall from Chapter 2 that functions transform associations are allowed direct access to the associa-
tion keys. For example, the following expression defines a function sub01 that accesses four fields of
an association and then creates a new association.

This facility implies that Map can create recoded datasets with easily understood transformations. For
example, recalling the slash-atmark (/@) shorthand for Map, the following example produces a new

2 temp.nb

dataset that holds only names and totals for each record of the original dataset. To understand this,
think of a dataset as essentially a list of associations, so that this code essentially maps across that list
and produces a new list of associations. In fact, one may proceed in exactly this way, sacrificing only
the convenient display of the result.

Out[]=

Expression Result
sub01 /@ ds01

first last total

John Doe 80

Jane Doe 80

Signor Rossi 91

Queries for Recoding and Selection

In database terminology, selective or substitutive set building performs a query, which retrieves infor-
mation from a dataset. WL correspondingly provides the Query command for producing query opera-
tors. Applying a query operator to a dataset produces a subset or a transformation (or a transformed
subset). The query syntax is extremely flexible, and queries may be complex. This subsection illus-
trates a few simple queries.

As initial example of queries, consider the filtering and recoding examples from the previous subsec-
tion. The query to implement the filtering example is Query[select01]. The query to implement the
recoding example is Query[All,sub01]. Each of this produce a function that may be applied to a data
set (or a list of associations) to produce the associated filtering or recoding. In addition, they can be
readily combined, as follows. After selecting only the records of interest (rather than all of them), each
record is transformed.

Out[]=

Expression Result
Query[select01,sub01] @ ds01

first last total

John Doe 80

Jane Doe 80

There is another useful way to implement the same query. As a convenient shorthand for such a query,
a data set can be applied directly to the query components.

temp.nb 3

Out[]=

Expression Result
ds01[select01,sub01]

first last total

John Doe 80

Jane Doe 80

As another example of recoding a dataset, consider the selection of a subset of the fields from every
record. First characterize set of records to process (here, all of them), and then list the desired columns
(by name). Here instead of applying Query[All,{"h1","h2"}] to the dataset, use the specialized query
syntax from the previous example. (An alternative query to achieve this result is KeyDrop[{"
first","last"}].)

Out[]=

Expression Result
ds01[All,{"h1","h2"}]

h1 h2

50 30

30 50

46 45

Recall again that functions applied to associations can make direct use of the association keys, which
facilitates easy creation of transformed datasets with Map. For example, the following function will
append to an associations a new key ("total") with a value that is the sum of the values associated to
the "h1" and "h2" keys.

It is quite possible to map this function across the data01 dataset. In this fashion, substitutive set
building can add fields. When recoding datasets, a more idiomatic alternative is to create an equiva-
lent query: once again use Query with the transformation as the second argument. The following
example again does this by means of the specialized query syntax; it use sub02 to append a "total"
column to the dataset.

4 temp.nb

Out[]=

Expression Result
ds02 = ds01[All,sub02]

first last h1 h2 total

John Doe 50 30 80

Jane Doe 30 50 80

Signor Rossi 46 45 91

As noted before, the Query command is remarkably flexible. For example, as explored in the next
subsection, queries can sort the data set on arbitrary criteria. An interesting and surprising application
of dataset queries is that LinearModelFit can be used as a query operator, after removing the field
names. To discard the headers, use the Values command. This produces a headerless rectangular
dataset, which is essentially a rectangular list of lists rather than a list of associations. (Use the Normal
command to produce the underlying list of lists.)

Out[]=

Expression Result

hvals=Values@ds01[All,{"h1","h2"}];

hvals[LinearModelFit[#, x, x]&]
FittedModel 75.4167 -0.803571 x

Later chapters discuss linear regression in more detail. The Wolfram Language How To entitled Per-
form a Linear Regression provides a useful introduction.

Partitioning and Classification

A partition of a set X is a collection of non-empty, pairwise-disjoint subsets whose union is X. Each of
these subsets is called a block. Recall that a collection of sets is pairwise-disjoint if the intersection of
any pair of the sets is empty, so the blocks of a partition have no elements in common. The simplest
interesting partition is a two-block partition. Two-block partitions are naturally formed by dividing set
elements into those that satisfy a certain property and those that do not. Whenever selective set
building picks a subset of items that satisfy some predicate, one may produce a corresponding parti-
tion by additionally creating the complement of that subset.

Since a list without duplicates may nicely represent a finite set, partitioning a list can illustrate partition-
ing a set. The following example uses TakeDrop and Partition to produce some arbitrary blocks from a
small list of numbers. The basic form of the TakeDrop command takes as arguments a list and an
initial sequence length. It partitions the list into two sublists: an initial sequence, and the remainder of
the list. The second argument can alternatively be a list of two integers, which specify the start index
and stop index of a sublist to take. The Partition command offers a different approach to partitioning:
it can partition a list into sequential sublists of a common length. The following example uses the two-
argument form of Partition, where the first argument is a list and the second argument is the length of
the sublists. In order to avoid discarding terminal elements when the list is not evenly divisible, use the

temp.nb 5

https://reference.wolfram.com/language/howto/PerformALinearRegression.html
https://reference.wolfram.com/language/howto/PerformALinearRegression.html

UpTo command in the second argument.

Out[]=

Expression Result
n7=Range[7] {1, 2, 3, 4, 5, 6, 7}
TakeDrop[n7,3] {{1, 2, 3}, {4, 5, 6, 7}}
TakeDrop[n7,{3,5}] {{3, 4, 5}, {1, 2, 6, 7}}
Partition[n7,UpTo[3]] {{1, 2, 3}, {4, 5, 6}, {7}}

This example shows that, given a list that represents a finite set, TakeDrop or Partition can produce a
list of lists that represents a particular set partition. However, social scientists more commonly need a
partition that is based on properties of the elements. Such a partition is called a categorization or a
classification of the elements, where the classification typically derives from a classifier function.

Use of GroupBy

The simplest two-argument form of the GroupBy command accepts as arguments a list to be classified
and a classifier function. The result is an association from categories in the range of the classifier
function to the lists of elements in each category, representing a one-way classification of the data. For
example, a set of households might be classified by household size. As a simple illustrative example,
consider the partition of a set of integers into two subsets that are the even members and the odd
members. The following functions serves as classifier examples. The first maps each integer to a single
classification, either "even" or "odd". The second maps each integer to a single classification, either
"div3" or "¬div3”; this classifies any integer as divisible by 3 or not.

When applied to a set of elements, categorization with GroupBy represents the inverse relation of the
classifier function on a set. For example, apply the div2 classifier to the first seven positive integers, as
follows.

Out[]=
Expression Result
gb2=GroupBy[n7,div2] odd → {1, 3, 5, 7}, even → {2, 4, 6}

In a Mathematica notebook, applying the Dataset command to the resulting association produces a
convenient tabular display.

Out[]=

Expression Result
ds2 = Dataset[gb2]

odd {1, 3, 5, 7}

even {2, 4, 6}

As a second simple example, use the one argument form of GroupBy, which produces a grouping
operator. (Recall that the at-sign operator is the prefix notation for function application.)

6 temp.nb

Out[]=

Expression Result
Dataset @ GroupBy[div3] @ n7

¬div3 {1, 2, 4, 5, 7}

div3 {3, 6}

A single classification can partition a dataset. A second classification can then refine this partition.
That is, partition blocks can themselves be partitioned, resulting in a refined partition of the original
set. (Partition Π ' is a refinement of partition Π iff every block of Π ' is included in a block of Π.)

It is possible to sequentially refine a partition by mapping a second GroupBy operator across the
values of an initial grouping. However, the GroupBy command simplifies this: it accepts a list of classi-
fiers that are sequentially applied. The following example illustrates this nested categorization by
producing a two-way classification. The result is a multilevel association: an association whose values
are in turn associations. Once again, the Dataset command can produce a convenient tabular display
of the result. The outer association keys are used as row headers. When the inner associations share
keys, as they do here, the Dataset command typically displays these keys as column headers. (Refined
control of the display of datasets is beyond the scope of this book, but see below for a few hints.)

Out[]=

Expression Result

ds23 = Dataset @

GroupBy[{div2,div3}] @ n7 ¬div3 div3

odd {1, 5, 7} {3}

even {2, 4} {6}

Block Size as a Dataset Query

Social scientists often care about the sizes of the partition blocks. The sizes of blocks produced by
categorization is a frequency count for the categories. A one-way frequency table displays categorical
data as a list of categories and their frequency of occurrence in a dataset. Mapping Length across a
one-way categorization produced by GroupBy will produce the information for a one-way frequency
table (as an association from categories to counts). However, when working with data set objects, it is
most natural to produce the length of each block by means of a query. Therefore, this section instead
uses a dataset query to accomplish the same goal. Construct the query with the following reasoning:
for each category in a one-way categorization, we want the total number of items in that category. This
suggests the query Query[All,Length]. Try this out on the previous even-odd classification dataset. In
a Mathematica notebook, the result displays as a simple one-way table.

temp.nb 7

Out[]=

Expression Result
ds2[All,Length]

odd 4

even 3

The same approach can create a two-way frequency table, which shows frequency counts for each
possible pair of classifications. Recall that a two-way categorization using GroupBy creates a multi-
level association, which is an association whose values are also associations. A frequency table reports
the number of items for each value of the inner association. This suggests the query Query[All,Al
l,Length]. Try this out on the previous two-way classification dataset. In a Mathematica notebook, the
result displays the element count for each block of the resulting partition of the dataset. It is a fre-
quency table for data described by two categorical variables, which is often called a two-way table, a
two-dimensional cross-tabulation, or a contingency table.

Out[]=

Expression Result
ds23[All,All,Length]

¬div3 div3

odd 3 1

even 2 1

The Map command can also produce this result, by means of the three-argument form. (The optional
third argument specifies the level at which to do the mapping.) This again displays the power of Map;
nevertheless, the use of queries is idiomatic when working with datasets.

Out[]=

Expression Result
Map[Length,ds23,{2}]

¬div3 div3

odd 3 1

even 2 1

Display Issues

The example above produces a nice cross-tabulation display with little effort. In the presence of empty
categories, a nice display involves a bit more work. For example, pick a different secondary classifier:
divisibility by 4 instead of divisibility by 3. The result is still a partition of the set, but now nothing is
listed for the empty category (odd and divisible by 4). Using the Dataset command to produce a
convenient categorical display is still acceptable, but the hierarchical display is not as easy to decipher

8 temp.nb

as a two-way table.

Out[]=

Expression Result

div4=If[Mod[#,4]⩵0,"div4","¬div4"]&;

ds24=Dataset@GroupBy[n7,{div2,div4}] odd ¬div4 {1, 3, 5, 7}

even ¬div4 {2, 6}

div4 {4}

In this case, it is possible to produce a display comparable to the previous two-way table by providing a
default value for every inner group and then updating it based on the data. For example, map an
association holding default values across every row of the dataset. (The default values must come
first.) Note that the result is no longer a true partition, because this adds an empty list.

Out[]=

Expression Result

provideDefaults=<|"div4"→{},"¬div4"→{},#|>&;

provideDefaults/@ds24 div4 ¬div4

odd {} {1, 3, 5, 7}

even {4} {2, 6}

To understand how this works, peer inside the dataset wrapper with the Normal command. This
dataset is essentially an association whose values are also associations. Recall that applying Map to an
association transforms the values, not the keys. For example, the key "odd" associates to the value
"¬div4"→{1,3,5,7}. Applying provideDefaults to this value produces "div4"→{},"¬
div4"→{1,3,5,7}. With this understanding, it is clear that mapping provideDefaults over the dataset
ds24 will provide these defaults wherever needed.

As of Mathematica version 12.1, control of dataset display remains tricky. It is affected by inferred type
information, which is beyond the scope of this book. Sometimes the above trick fails to produce a two-
way display rather than a hierarchical display. Applying Transpose twice to the dataset sometimes
forces the two-way display. An alternative is to use a dataset for recoding, filtering, and aggregation,
and then subsequently extract the results for use with TableForm or Grid.

Out[]=

Expression Result

dta=Normal@Query[All,All,Length][provideDefaults/@ds24];

rowHeaders=Keys[dta];columnHeaders=Union@@Keys/@Values@dta;

values=Outer[dta,rowHeaders,columnHeaders];

TableForm[values,TableHeadings→{rowHeaders,columnHeaders}]

div4 ¬div4
odd 0 4
even 1 2

temp.nb 9

