
Introduction to Probability
This chapter approaches the topic of probability by considering outcomes that are uncertain but 
nevertheless reflect a well defined underlying structure.  This structure is a probability distribution.  A 
probability experiment produces an outcome that is governed by a probability distribution.  The out-
come of a probability experiment is one of a fixed set of outcomes, which have stable probabilities of 
occurrence.  A probability experiment produces a draw from a probability distribution.  

A simple example of a probability experiment is flipping a fair coin and recording the outcome as heads 
or tails.  Another example is rolling a fair standard die and recording the outcome as the number of face 
up pips.

Random Variates
Given knowledge of the generating process, point predictions of fully deterministic outcomes are error 
free, but point predictions of random outcomes may prove to be erroneous.  This chapter illustrates 
this distinction by introducing basic concepts in probability and statistics, along with a few related 
computational tools.

Pseudorandom Outcomes

Scientific programming languages typically include facilities for the generation of numbers that  
appear to be truly random even though they are generated algorithmically.  Since the algorithm produc-
ing the numbers is completely deterministic, the generated values are pseudo-random.  For concision, 
this book nevertheless typically refers to them as random numbers, produced by random-number 
generators (RNGs).

Seeding the RNG

From a given initial state, a  random-number generator (RNG) produces a determinate sequence of 
values.  This initial state may be determined by a seed for the RNG.  Truly replicable computational 
results require explicitly seeding the RNG.  The SeedRandom command takes one argument (the seed) 
and initializes the random-number generator.  All WL functions that return pseudo-random values are 
affected by SeedRandom and by any subsequent generation of pseudo-random values.  The following 
example illustrates the use of RandomChoice to select one choice from a list of alternatives; the particu-
lar seed is arbitrary.



Out[ ]=

Expression Result

alternatives=Range[1000];

SeedRandom[314159];RandomChoice[alternatives] 727

RandomChoice[alternatives] 696

SeedRandom[314159];RandomChoice[alternatives] 727

A caveat is in order.  Any expression whose value depends on the program state requires care in use.  It 
involve a loss of referential transparency, correspondingly making it harder to test program code for 
correctness.  Nevertheless, such expressions are often used in scientific programming.  Specifically, it is 
common to rely on random number generators whose outputs depend on a hidden global state (such 
as the random seed and the number of calls to the RNG).  With this caveat in mind, this chapter follows 
the common practice.

Coin Flipping

To model a coin toss with the RandomChoice command, let h denote an outcome of heads, and let t 
denote an outcome of tails.  From the list {h,t}, the RandomChoice command picks heads or tails with 
equal likelihood.  Provide a positive integer as a second argument to produce a list of such outcomes.

Out[ ]=

Expression Result Comment
RandomChoice[{h,t}] t one coin toss
RandomChoice[{h,t},3] {h, t, t} three coin tosses

Random numbers can help highlight the difference between Set and SetDelayed, covered in Chapter 1.  
Consider repeatedly tossing a coin.  To represent an experiment, the value of toss should be an indepen-
dent coin toss.  Using Set to bind a variable to a RandomChoice outcome immediately evaluates the 
right-hand side and assigns the value produced to toss, which then evaluates to that single value every 
time.  However, using SetDelayed, instead ensures that toss generates a new random choice each time 
it is evaluated.

Out[ ]=

Expression Result Comment
toss=RandomChoice[{h,t}] t use of Set
Table[toss,5] {t, t, t, t, t} identical items
toss:=RandomChoice[{h,t}] use of SetDelayed
Table[toss,5] {h, t, t, h, t} varied items

Subexperiments and Trials

A probability experiment produces a random outcome from a probability distribution.  Sometimes an 
experiment can be decomposed into independent subexperiments.  For example, consider a coin flip 
along with an unrelated roll of a three-sided die.  This single experiment may be decomposed into two 
independent subexperiments.  Use the Tuples command to represent the sample space of the experi-
ment as the direct product of the sample spaces of the two subexperiments: in this case, 
Tuples[{{h,t},{1,2,3}}].

2     temp.nb



Sometimes, subexperiments share a common description.  For example, decompose an experiment 
involving n identical coin flips into n independent subexperiments of one coin flip, or decompose a roll 
of n identical dice into n independent subexperiments of one roll each.  In these two example experi-
ments, the subexperiments are called trials, which implies that each has an identical description.  The 
sample space of the overall experiment is the direct product of the sample spaces of the trials.  For 
example, a coin-flipping experiment with n trials has 2n possible sequences as outcomes, each of which 
may be represented by an ordered n-tuple.  The Tuples command can again produce the entire sample 
space, and since each trial is identical, its two-argument form is particularly convenient: Tuples[{h,t},n] 
produces the desired result for any n.  (But as always, remember that 2n grows much more quickly than 
n.)

Random Variables and Random Variates

A random variable maps random outcomes to real numbers.  This standard meaning may cause confu-
sion: a random variable is defined to be a function.  There is nothing random about the function itself: it 
is a fixed rule for turning sample-space inputs into numerical outputs.  Any randomness in the function 
values is therefore entirely attributable to randomness in the underlying outcome.  (For example, the 
outcome of a fair coin flip.)  To add to the potential terminological confusion, the realized function 
values are called random variates.

These concepts are best illustrated by example.  In the coin-flipping example, it is traditional to map 
the outcome h to 1 and the outcome t to 0.  Flipping a coin produces a random outcome (h or t), which 
is then mapped to a real number (1 or 0).  The resulting real number is called a random variate, or a 
draw from the probability distribution, or a realization of the random variable.  The following example 
defines this function with an association and then maps it across a sequence of outcomes to produce a 
sequence of random variates.  (Recall that /@ is the shorthand operator notation for Map.)

Out[ ]=

Expression Result
outcomes = RandomChoice[{h,t},5] {t, h, t, t, h}
variates = <|h→1,t→0|> /@ outcomes {0, 1, 0, 0, 1}

Coin flip simulations do not typically bother with the intermediate representation of the outcomes.  
Instead, the variates are directly produced.  Consider the following model of flipping an unfair coin.  
Using RandomChoice, the first argument can be a rule that provides weights that determine the odds 
of each outcome.  For example, suppose a head should only occur about 40 percent of the time.  This 
can be implemented with any weights that imply this relative frequency.  (The exact number of heads 
in an experiment will of course be random; we will come back to this.)  In the following example, an 
experiment with 100 trials produces data, and applying the Counts command to the data helps to 
determine whether the results of the experiment approaches our expectations.
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Out[ ]=

Expression Result
unfairToss:=RandomChoice[{40,60}→{1,0}]

variates=Table[unfairToss,100];

Counts[variates] 0 → 62, 1 → 38

This is a fine approach to generating these random variates.  However, it is somewhat more natural in 
WL to specify a probability distribution and then use the RandomVariate command to generate the 
needed variates.  One simple way to define a distribution with finite support is with the EmpiricalDistri
bution command.  The result is a data-distribution object, as illustrated in the following example.

Out[ ]=

Expression Result

edist01=EmpiricalDistribution[{60,40}→{0,1}];

RandomVariate[edist01,5] {1, 0, 0, 1, 0}

Probability
A random variable has a range of possible values.  The underlying probability distribution determines 
the probability that the function will produce values in this range.  These probabilities are summarized 
by a cumulative distribution function (CDF), which for each real number x returns the probability that a 
random variable will take on a value no bigger than x.  Letting X be represent a random variable, charac-
terize the associated cumulative distribution function FX as follows.

FX = x  P[{ω X[ω] ≤ x}] (1)

That is, for an real number x, a CDF returns the probability of an outcome ω that the function X pro-
duces a value no bigger than x, given the underlying probability distribution of outcomes.  Later sec-
tions provide concrete examples of CDFs and some uses for them.

Probability and Counting

A sample space is the set of all possible distinguishable outcomes.  A random outcome cannot be 
known with certainty before it is observed, but it must occur in the sample space.  For example, charac-
terize the sample space for a coin flip as {h, t} for heads or tails.  This means that a coin flip is always 
resolved as heads or tails and never anything else (such as standing on edge or being snatched in 
midair by a passing bird).  Similarly,  characterize the sample space for a roll of a standard six-sided die 
as the set of possible pip counts, {1, 2, 3, 4, 5, 6}.  

An event is any subset of the sample space.  For example, consider the event of an even roll of a six-
sided die, characterized as {2, 4, 6}.  An event may be a singleton, containing a single outcome, in which 
case it is an elementary event.  Events are mutually exclusive if they are pairwise disjoint.  For example, 
for the roll of a die, the even roll event and the odd roll event are mutually exclusive.

Events have associated probabilities.  A mapping from events to probabilities is a probability distribu-

tion function.  A probability function P is nonnegative, normalized, and additive.  The following state-
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ment of this adds a little detail, given a sample space Ω and a collection of events Ei.

◼ nonnegative definite: 0 ≤ P[Ei]

◼ normalized: P[Ω]⩵ 1

◼ countably additive: P[⋃i=1
∞ Ei]⩵∑i=1

∞ P[Ei] whenever the events Ei are mutually exclusive

The last property is often called σ-additivity.  Since the null set is disjoint from any other set (including 
itself), σ-additivity implies that P[Ω] = P[Ω] + ∑i=2

∞ P[∅], implying that P[∅]⩵ 0.  Similar reasoning 
implies finite additivity: the union of any finite number of mutually exclusive events has a probability 
equal to the sum of the individual event probabilities.  In particular, for any event E, 
1 ⩵ P[Ω]⩵ P[E ⋃ Ec] = P[E] + P[Ec], so we know that P[Ec]⩵ 1 - P[E].  Furthermore, similar reasoning 
produces a monotonicity property: E1 ⊆ E2 ⇒ P[E1] ≤ P[E2].  Simply put, an event the includes additional 
outcomes cannot have lower probability.

Recall that a partition of a set is a set of non-empty, pairwise disjoint sets whose union is the original 
set.  Let {Ei}i=1

n  be a partition of the sample space Ω, and consider an arbitrary event E.  Then ⋃i=1
n (E ⋂ Ei) 

is a union of pairwise disjoint sets that is equal to E.  Applying the additivity of the probability distribu-
tion function produces the law of total probability:

P[E] = ∑i=1
n P[E⋂ Ei] (2)

Consider a finite sample space (Ω) with cardinality N, and consider the special case where each out-
come is equally likely.  This means that the probability of any individual outcome ωi is 1 /N, since 
distinct elementary events are mutually exclusive.  The following equation illustrates this, following the 
standard convention that P[ωi] means P[{ωi}], the probability of a singleton.

1 ⩵ P[Ω] = P⋃n=1
N {ωn} = ∑n=1

N P[ωn] = ∑n=1
N P[ω1] ⩵ N * P[ω1] (3)

On a finite sample space with equiprobable outcomes, the probability of an event E is the proportion of 
the possible outcomes in the event: P[E] = E /Ω.  This links probability to counting.  As a concrete 
example, suppose two students are selected randomly from a class of three men and three women.  
Assuming each student is equally likely to be selected, compute the probability that both are male.  For 
this example, the sample space is the set of unordered pairs of students.  Recall that there are 
15 ⩵ C[6, 2] different ways to pick two students from a class of six; this is the size of the sample space.   
Similarly, there are 3 ⩵ C[3, 2] ways to pick two students from the group of men.  So the probability is 
1 /5 ⩵ 3 /15 that both students are male.  (By symmetry, this is also the probability that both are 
female.)

Out[ ]=

Expression Result Comment
npairs=Binomial[6,2] 15 count all pairs
mpairs=Binomial[3,2] 3 count male pairs
mpairs/npairs 1/5 P[two males]

Conditional Probability and Independence

An event is a subset of the sample space, which is the set of possible outcomes.  If event E1 provides no 
information about the likelihood of event E2, the two events are  independent.  In this case, knowing 
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that E1 occurred does not help to determine whether E2 occurred.  This independence is sometimes 
written as E2 ⟂ E1.  If E1 is uninformative about E2 then it must also be uninformative about E2

c , so E1 
and E2

c  must also be independent.

By definition, E1 and E2 are independent if the probability that both occur is the product of their proba-
bilities: P[E1 ⋂ E2]⩵ P[E1]×P[E2].  To illustrate the independence of events,  consider an experiment 
comprising two independent coin flips.  Let E1 be the event that the first flip comes up heads.  Let E2 be 
the event that the second flip comes up heads.  Let p be the probability of a flip coming up heads.  
Since the flips are independent, the probability that both come up heads is p2.

In contrast, sometimes knowing that one event (E1) has occurred is informative about whether another 
event (E2) has occurred.  Write the probability of E2 conditional on knowing E1 as P[E2  E1], defined as 
follows: scale up the probability of the joint event (i.e., that both occurred) by taking into account that 
E1 occurred.

P[E2  E1] = P[E2 ⋂ E1] / P[E1] (4)

Note that we can partition the event E2 into two mutually exclusive blocks:  
P[E2] = P[(E2 ⋂ E1)⋃ (E2 ⋂ E1

c)] = P[E2 ⋂ E1] + P[E2 ⋂ E1
c].  Applying the definition of conditional probability 

then produces P[E2] = P[E2  E1]×P[E1] + P[E2  E1
c]×P[E1

c].

If the two events are mutually exclusive, then observing E1 is very informative:  E2 cannot have hap-
pened.  For example, if the roll of a die is even, it cannot be odd.  However, if two events are indepen-
dent, then knowing one occurred is uninformative about whether the other occurs.  In the case of 
independence, it follows from the definition of independence and of conditional probability that 
P[E1  E2] = P[E1] and P[E2  E1] = P[E2].

The following figure illustrates these considerations by assuming that outcomes fall uniformly in an 
interval Ω.  Events are displayed visually by offsetting them from the sample space.  This figure illus-
trates four events: P[A] = 1 /2, P[B] = 1 /3, and P[C] = P[D] = 1 /4.  Because of the way they overlap, event A 
is very informative about event C.  Knowing that A occurred doubles the likelihood that C occurred: 
P[C  A] = P[C ⋂ A] /P[A] = (1 /4) /(1 /2) = 1 /2.  And, because A and D are mutually exclusive, observing A is 
very informative about D: it tells us that D must not have occurred.  However, even though A and B 
overlap, knowing that A occurred is not informative about the likelihood that B occurred.  That is, 
P[B  A] = P[B ⋂ A] /P[A] = (1 /6) /(1 /2) = 1 /3, which equals P[B].

Out[ ]=

Ω

A

B

C

D

Figure 14: Intersection and Conditional Probability

Conditioning on E1 treats the occurrence of E1 as given.  As implied by the definition, P[E1 E1]⩵ 1.  
Nonnegative definiteness and σ-additivity of conditional probability are implied by the unconditional 
probability distribution, since P[E2 ⋂ E1] ≥ 0 and since intersection distributes over union.  In short, 
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conditional probability is effectively a probability measure on a restricted sample space.

As a simple example of independence, consider a single roll of a fair die.  Let E1 = {1, 3, 5} and 
E2 = {5, 6}, so that P[E1] = 1 /2 and P[E2] = 1 /3.  Using the definition of independence, confirm that these 
two events are independent: the probability of both occurring is 1 /6 = (1 /2) (1 /3), which is the probabil-
ity of rolling a 5.  A two-way relative frequency table exposes the independence of the events E1 and E2.  
For example, knowing whether a roll was in E1 does not change the likelihood that it was in E2.  Specifi-
cally, a third of the time that E1 occurs then E2 also occurs, but it is also true that a third the time that E1

c  
occurs then E2 also occurs.  Conditioning on whether or not E1 occurred does not reduce the uncer-
tainty about whether or not E2 occurred.

One way of visualizing this is with a two-way relative frequency table, which displays the relative 
frequencies of the four joint events.  An outcome is either in E1 or E1

c  (odd or even), and it is either in E2 
or E2

c  ({5, 6} or {1, 2, 3, 4}).  By the product rule of counting, there are 4 different possible joint events.  A 
two-way relative frequency table exposes the independence of the events E1 and E2.  For example, 
knowing whether a roll was odd does not change the likelihood that it was either 5 or 6.

Out[ ]=

Table 2: Fair-Die Outcomes and Joint Probabilities (E2={5,6})

E2 E2
c

odd {5} {1, 3}
even {6} {2, 4}

⇒

E2 E2
c

odd 1  6 1  3

even 1  6 1  3

In contrast, knowing that a roll of a six-sided odd is even provides information about whether the 
outcome is prime.  These two events are not independent.  There is only one even prime, which has an 
unconditional probability of 1 /6.  The unconditional probability of rolling a prime is 
P[{2, 3, 5}] = 3 /6 = 1 /2, but the probability that a roll is prime given that it is odd is the conditional 
probability P[{2, 3, 5}  {1, 3, 5}] = P[{3, 5}] /P[{1, 3, 5}] = (2 /6) /(3 /6) = 2 /3.  Again, approach this by 
means of a two-way relative frequency table.  An outcome is either in E1 or E1

c  (odd or even), and it is 
either in E2 or E2

c  (prime or not prime).  As usual, applying the product rule of counting, that gives us 4 
different possible joint events.  Conditioning on whether or not the rolls was odd in informative (but 
not determinative) about whether it was prime.

Out[ ]=

Table 21: Outcome Lists and Joint Probabilities for a Fair Die

prime not prime
odd {3, 5} {1}
even {2} {4, 6}

⇒

prime not prime

odd 1  3 1  6

even 1  6 1  3

When more than two events involved, the concept of independence becomes more complicated.  
Independence is not a transitive relation: does not get passed along a chain of events.  That is, indepen-
dence of events A and B along with independence of events B and C does not imply that A and C are 
independent.  The following figure illustrates this.  
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Out[ ]=

Ω

A

B

C

Figure 58: Independence Is Not Transitive

In this figure, events A and B are independent, and events B and C are also independent.  Yet A is not 
independent of C.  Additionally, A is not even independent of B ⋂ C.  This suggests that pairwise indepen-
dence is not adequately informative about larger collections of events.  The extended concept for any 
collection of events {E1, …, EN} is mutual independence: they are mutually independent if for  every 
subset of this collection the probability of the joint event (i.e., that all occurred) equals the product of 
the unconditional probabilities of the events.

Bayes’s Rule

The probability of event E2 conditional on event E1 is P[E2  E1] = P[E2 ⋂ E1] /P[E1].  Symmetrically, the 
probability of event E1 conditional on event E2 is P[E1  E2] = P[E2 ⋂ E1] /P[E2].  Together these imply 
Bayes’s Rule:

P[E2  E1] = P[E1  E2] × P[E2] / P[E1] (5)

The law of total probability and the definition of conditional probability imply that  
P[E1] = P[E1  E2]×P[E2] + P[E1  E2

c]×P[E2
c].  Correspondingly, Bayes’s Rule is often written in the follow-

ing second form.

P[E2  E1] = P[E1  E2] × P[E2] / (P[E1  E2] × P[E2] + P[E1  E2
c] × P[E2

c]) (6)

As an application, consider automated auditing of a companies for possible fraud.  If a company’s 
accounts are fraudulent, then 90% of the time the audit software generates an alert: 
P[alert  fraud] = 0.90.  Unfortunately, the audit software also generates a fraud alert 10% of the time 
when there is no fraud: P[alert  ¬ fraud] = 0.10.  Fortunately, fraud is rather rare, occurring in only 1% 
of all firms: P[fraud] = 0.01.  Compute the probability of fraud given a fraud alert using the second form 
of Bayes’s Rule.  Note that P[alert  fraud]×P[fraud] = 0.90×0.01 = 0.09.  Also, 
P[alert  ¬ fraud]×P[¬ fraud] = 0.10×0.99 = 0.099.  Applying the second form of Bayes’s Rule produces 
P[fraud  alert] = 0.09 / (0.09 + 0.099) ≈ 0.48.  So despite the rather good performance of the fraud 
detection software, an alert indicates actual fraud less than half of the time.

Empirical Distributions and Statistics
Empirical work often scrutinizes the distribution of observed outcomes.  When these outcomes mani-
fest randomness with an underlying stable structure, researchers often characterize the outcomes as 
being drawn from a probability distribution.  An empirical distribution summarizes the data in a way 
that sheds light on the underlying probability distribution.
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A Coin-Flipping Example

When applied to a list of observations, the EmpricialDistribution command produces a data-distribu-
tion object, which provides access to the empirical distribution.  As an example, produce 100 outcomes 
with the unfairToss function, defined earlier, and then produce an associated data-distribution object.

Out[ ]=

Expression Result

data = Table[unfairToss, 100];

edist = EmpiricalDistribution[data]
DataDistribution Type: Empirical

Data points: 100 

When there are only a countable number of possible outcomes, the distribution is discrete.  For exam-
ple, a coin-flipping distribution has only two possible outcomes, so it is a discrete distribution.  This 
distribution may be parameterized by the probability of drawing a head.

Draw random variates from a probability distribution produces information about the distribution.  The 
empirical probability density function (PDF) of a discrete distribution is simply a summary of the 
observed relative frequencies of each of the outcomes.  (This is often called a probability mass func-
tion.)  The empirical cumulative distribution function (CDF) of a discrete distribution simply accumu-
lates these relative frequencies after sorting on the values of the outcomes.  The empirical PDF and 
empirical CDF can provide useful nonparametric characterizations of the underlying distribution.  An 
empirical distribution gives us access to both of these.  Recalling that Boole converts False and True to 
0 and 1, let us take a look at the PDF and CDF implied by our data.

Out[ ]=

Expression Result
PDF[edist,x] (16*Boole[0 == x])/25 + (9*Boole[1 == x])/25
CDF[edist,x] (16*Boole[0 <= x])/25 + (9*Boole[1 <= x])/25

Charts can help us visualize these functions.  The following charts utilize the DiscretePlot command to 
create charts from the empirical distribution.  This produces a nice stick-pin plot of the PDF.  For our 
plot of the CDF, we can achieve an easy and clear designation of the function value at the points of 
discontinuity by setting the ExtentSize and ExtentMarkers options as follows.  (For convenience, we 
again assign a sequence of options that are shared across charts to an options variable.)

Out[ ]=

Figure 2: PDF and CDF of Empirical Distribution
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The adequacy of the empirical distribution in representing the underlying distribution depends on the 
quality and quantity of the underlying data.  When the number of possible outcomes is small compared 
to the number of draws, the data are likely to include every possible outcome.   However, it is possible 
that that data will include no outcomes for some values that have a small but positive probability of 
occurring, especially with a small number of observations.  The missing values will receive zero weight 
in the empirical distribution.

Statistics

A statistic is a number that summarizes some feature of a dataset.  To sample a population or a distribu-
tion is to collect observations from it.  A sample statistic is therefore a number that summarizes some 
feature of a sample.  Two important sample statistics are the sample mean and the sample variance.

After sampling a probability distribution, produce a sample statistic by applying a function to the 
resulting collection of random variates.  The function itself is also often termed a statistic.  Producing a 
sample statistic creates a random variate, with properties that depend on the underlying probability 
distribution.  This means that sample statistics may shed light on the underlying probability distribu-
tion.  For example, the sample mean and sample variance might be used to draw inferences about the 
mean and variance of the underlying probability distribution.

The data-distribution object produced by the EmpiricalDistribution command provides access to 
many sample statistics, including the sample mean and variance.  To see this, first apply Mean to the 
empirical distribution, and then recall that the sample mean deflates the sum of the observations by 
the number of observations: X =∑n=1

N Xn /N.  Applying the Mean command directly to the data produces 
the same result.

Out[ ]=

Expression Result
mean = Mean[edist] 9/25
mean ⩵ Total[data] / Length[data] True

Next, apply the Variance command to the empirical distribution, and then recall that the (unadjusted) 
variance of a sample deflates the sum of the squared deviations of observations from their mean by the 
number of observations: var[X] =∑n=1

n Xn - X
2
N.

Out[ ]=

Expression Result
var = Variance[edist] 144/625
var ⩵ Total[(data-mean)^2] / Length[data] True

However, when applied directly to the data, the Variance command includes a Bessel correction.  
When used as an estimate of the population variance, this correction can reduce the bias while increas-
ing the mean squared error.  Although it is fairly common to refer to the result as the sample variance, it 
is less ambiguous to refer to it as the corrected sample variance.
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Out[ ]=

Expression Result
nobs = Length[data] 100
Variance[data] ⩵ var*nobs/(nobs-1) True

The sample mean and sample variance are useful descriptive statistics: they help describe salient 
properties of the data.  In addition, they often provide more than description.  They provide informa-
tion about the underlying probability distribution—information that can guide inferences about the 
process generating the data.

Test Statistics

A test statistic is a sample statistic used to provide information about a probability distribution.  A test 
statistic may be used to test hypotheses about the process that generated a dataset.  For example, 
consider the hypothesis that a coin is fair.  Under this hypothesis, the expectation is that half of the flips 
will come up head and half tails.  More generally, if K different categories have associated probabilities 
pk, then the expectation is that in N draws there should be N pk outcomes in category k.  Actual data 
naturally differ from this expectation due to randomness, but big differences should be rare.

When we encounter data that our beliefs imply should occur very rarely, the data provides evidence 
against those beliefs.  A statistical test attempts to quantify this idea.  For example, data holds the 
outcomes of repeatedly flipping a simulated coin, and Counts produces an association from each 
outcome to its frequency.  (The use of KeySort just ensures that the outcomes are in a natural order.)  
Consider the hypothesis that this is a fair coin; call this the null hypothesis.  An association to summa-
rize this null hypothesis by mapping each outcome to its expected frequency.  The beliefs embodied in 
the null hypothesis deviate from the observed outcomes.  Produce these deviations.  (Subtraction of 
associations produces the differences of the values if the keys match.)

Out[ ]=

Expression Result
observedFrequency=KeySort@Counts[data] 0 → 64, 1 → 36

beliefs=<|0→1/2,1→1/2|>;

expectedFrequency=Length[data]*beliefs 0 → 50, 1 → 50

deviations=observedFrequency-expectedFrequency 0 → 14, 1 → -14

Of course, such deviations can happen just by chance.  How unlikely are deviations of this size if the 
null hypothesis is correct?  The following test statistic is attributed to Karl Pearson.  (Again, the total is 
computed across the values, not across the keys.)

Out[ ]=

Expression Result

pearson = Total[deviations^2 /

expectedFrequency]

196/25

In order to use this statistic for testing, we need information about its distribution.  Pearson showed 
that if the null hypothesis is true, then the distribution is approximately Chi-square with degrees of 
freedom equal to the number of categories reduced by 1.  (That is two categories, in the present case, 
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reduced by 1 because—as we can see by examining the value of our deviations variable—the devia-
tions are constrained to sum to 0.)  A later section discusses the Chi-square distribution, which under-
pins many statistical tests.  For now, just apply the PearsonChiSquareTest command to two argu-
ments: the data under consideration, and a distribution representing our null hypothesis.  (Use the 
EmpiricalDistribution command to provide the distribution for the null hypothesis.)  This command 
reports the probability (under the null hypothesis) of deviations as big or bigger than those observed.  
Under the null hypothesis of a fair coin, we should encounter such data in only one such experiment 
out of every two hundred.  These data provide evidence against the null hypothesis.

Out[ ]=

Expression Result

PearsonChiSquareTest[data,

EmpiricalDistribution[{0.5,0.5}→{0,1}]]

0.00511026

Distributions Related to the Binomial
This section introduces probability distributions that have finite sample spaces.  Coin flipping and die 
rolling are classic examples: the sample space for a coin flip has only two elements, and the sample 
space for a six-sided die roll has six elements.  Finite sample spaces often represent conceptual cate-
gories.  Social science often categorizes outcomes and therefore works with distributions that are 
fundamentally categorical.  Letting ncats denote the number of categories and ntrials denote the 
number of trials, the following table names a few distributions of particular interest.

Out[ ]=

Multinomial Distributions
ntrials=1 ntrials>1

ncats=2 Bernoulli Binomial
ncats>2 Categorical Multinomial

Bernoulli and Binomial Distributions

A probability function with a finite sample space may be naturally represented by a finite map from 
possible outcomes to their probabilities.  Recall from Chapter 2 that WL provides the Association data 
type for the representation of finite maps.  For example, <|t→0.6,h→0.4|> is one way to characterize the 
probability distribution for a flip of an unfair coin, where a coin flip is expected to turn up tails 60% of 
the time.

Out[ ]=

Expression Result

pf=<|t→0.6,h→0.4|>;

pf[t] 0.6
pf[h] 0.4

The Bernoulli and binomial distributions are based on random outcomes that fall in one of two cate-
gories, traditionally illustrated by a tails-or-heads outcome of a coin flip.  These categories are tradition-
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ally called failure and success, and these distributions assign them corresponding values of 0 or 1.  The 
probability that an outcome will be success, traditionally designated by p, parameterizes the distribu-
tions.  The Bernoulli distribution characterizes a single such outcome (e.g., a single flip of a possibly 
unfair coin).  The binomial distribution characterizes a collection of such outcomes (e.g., 10 flips of a 
coin).  Evidently, the Bernoulli distribution is a special case of the binomial distribution.

Bernoulli Distribution

The Bernoulli distribution is the simplest example of a discrete probability distribution.  There are only 
two possible outcomes: 1 (success) or 0 (failure).  The distribution is governed by a single parameter: 
the probability of drawing a 1 instead of a 0.  Here are three examples of creating a Bernoulli distribu-
tion with the BernoulliDistribution command.  Perhaps surprisingly, a symbolic value is completely 
acceptable.

Use the RandomVariate command to draw random variates from a distribution.

Out[ ]=

Expression Result
RandomVariate[bern50,10] {0, 0, 0, 0, 0, 1, 0, 1, 0, 0}
RandomVariate[bern60,10] {1, 1, 1, 1, 0, 0, 1, 1, 0, 1}

Naturally, this is not possible if the parameter is symbolic.  Nevertheless, symbolic manipulations of 
probability distributions are remarkably powerful.  For example, we can produce a symbolic representa-
tion of the PDF and CDF for a symbolic  probability parameter.  (Interpret the domain values of True to 
be all those not otherwise specified.)

Out[ ]=

Expression Result
PDF[bernp, x.] 1 - p. x. ⩵ 0

p. x. ⩵ 1

0 True
CDF[bernp, x.] 0 x. < 0

1 - p. 0 ≤ x. < 1

1 True

The PDF tells us that, for a single draw from the Bernoulli distribution, the probability is (1 - p) of 
drawing a 0 and p of drawing a 1.  All other values have zero probability of occurring.  Correspondingly, 
the CDF says that drawing a value less than 0 is impossible, while drawing a value less than or equal to 
1 is certain.

The plots for a concretely parameterized PDF and CDF are correspondingly simple.  The following chart 
plots the PDF and CDF of the Bernoulli distribution with a probability of success of 0.6.  The plot of the 
PDF shows the probability of each of the two possible outcomes, 0 or 1.  The plot of the CDF has a jump 
at each value that is given a positive probability of occurring by the PDF.

temp.nb     13



Out[ ]=

Figure 4: Bernouilli Distribution (p=0.6)

Use the Mean and Variance commands to compute the mean and variance of a distribution.  It is even 
possible to express the mean and variance symbolically.

Out[ ]=

Expression Result
{Mean[bern50],Variance[bern50]} {0.5, 0.25}
{Mean[bern60],Variance[bern60]} {0.6, 0.24}
{Mean[bernp],Variance[bernp]} {p., (1 - p.)*p.}

Moments of a Distribution

The mean is the expected value of the level of a random variable.  Interpret this as follows: many draws 
from the distribution will have an arithmetic average that tends to equal the mean of the distribution.  
(Later sections make this more precise.)  Calculate the mean of a distribution as the probability-
weighted average of the possible values.  For example, calculate the mean of a Bernoulli distribution as 
follows.

(1-p)*0 + p*1 ⩵ p (7)

The variance is the expected squared deviation from the mean.  A low variance indicates that draws 
from the distribution tend to lie close to the mean.  Calculate the variance of a distribution as the 
probability-weighted average of the possible values of the squared deviation from the mean.  For 
example, calculate the mean of a Bernoulli distribution as follows.

(1-p)*(0 - p)2 + p*(1 - p)2 ⩵ p * (1 - p) (8)

The mean and variance of a distribution are examples of moments of the distribution.  Define the r-th 
moment of the distribution about a value k to be the expected value of (X - k)r.  With this definition, the 
mean is the first moment about 0 of the distribution.  A moment about 0 is sometimes called a raw 

moment.   WL provides a variety of facilities for moment computation, including the Moment command 
for computing raw moments and the Expectation command for computing the expected value of 
arbitrary expressions.  The arguments of the Moment command may be a distribution and a specifica-
tion of the order of the moment.  The arguments for the Expectation command may be an expression 
and a specification of the distribution of one of the variables in the expression.  (The distribution 
symbol, produced as dist, is shorthand for the Distributed command.)  The commands can be 
used with symbolic distributions.
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Out[ ]=

Expression Result
Moment[bernp,1] p.
Expectation[x,xbernp] p.

A moment around the mean is usually called a central moment.  The CentralMoment command com-
putes central moments.  Naturally, the Expectation command can do so as well.

Out[ ]=

Expression Result
CentralMoment[bernp,2] 1 - p. p.
Expectation[(x-p.)^2,xbernp] p. - p.

2

Binomial Distribution

The Bernoulli distribution is the simplest case of a discrete distribution, where 0 and 1 are the only two 
possible outcomes.  The previous subsection modeled a coin flipping experiment with a Bernoulli 
distribution.  Suppose that instead of of a single coin flip, an experiment involves two successive flips, 
again mapping tails to 0 and heads to 1.  By the product rule, there are four possible outcomes.  The 
Tuples command can enumerate them.

Out[ ]=

Expression Result

possibleOutcomes =

Tuples[{0,1},2]

{{0, 0}, {0, 1}, {1, 0}, {1, 1}}

Each outcome has an associated total number of successes (heads), which is just the summation over 
the subexperiments.  Partition the sample space of possible outcomes into three different events, 
based on the total number of successes.

Out[ ]=

Table 6: Categorization of Outcomes by Total
event total
{{0, 0}} 0
{{0, 1}, {1, 0}} 1
{{1, 1}} 2

These events are one useful way to categorize the outcomes.  Here is a way to display the information 
that is easily generalized: use the GroupBy command to group the possible outcomes by their total 
number of heads.  The result is an association that maps each possible number of heads to the list of 
outcomes that produce that number.  

Out[ ]=

Expression Result

g = GroupBy[Total] @

possibleOutcomes

0 → {{0, 0}}, 1 → {{0, 1}, {1, 0}}, 2 → {{1, 1}}

If the two flips are independent with the same probability of success, the result of each flip can be 
considered a Bernoulli trial of the larger 2-flip experiment.  This implies a probability for each possible 
two-flip outcome that derives from the single probability of success.  Naturally the probabilities over 
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the four possible outcomes must sum to 1.

Out[ ]=

Outcome Probabilities (2 Trials)
Second Trial

F
i
r
s
t

T
r
i
a
l

0 1

0 1 - p2 1 - p p

1 1 - p p p2

Unsurprisingly, an experiment comprising two sequential draws from a categorical distribution pro-
duces another categorical distribution, where the new categories are ordered pairs of the old cate-
gories.  A new random variable, based on this new categorical distribution, is the total number of heads 
realized by an outcome.  For the case of two flips, shown above, this random variable has three possi-
ble outcomes: 0, 1, or 2 successes.  The table of head counts together with the table of outcome proba-
bilities implies a probability of any particular head count k, which is the sum of the probabilities of all 
the outcomes that produce exactly k heads.  Note that every way of producing exactly k heads has the 
same probability, which when multiplied by the number of ways of producing k heads produces the 
probability of k heads.  A simple association can once again characterize the probability density func-
tion for this new discrete distribution.

This association characterizes the PDF of a 2-trial binomial distribution.  Applying the PDF command to 
WL’s predefined BinomialDistribution expresses the same result.  As expected from the development 
to this point, a binomial distribution is determined by two arguments: the number of Bernoulli trials, 
and the probability of success.

Out[ ]=

Expression Result

PDF[BinomialDistribution[2,p],k] //

Simplify[#,Assumptions→{0≤k≤2}]&

1 - p2-k pk Binomial[2, k]

The PDF for the binomial distribution involves an old friend: the binomial coefficients.  Generalizing, 
consider the case of n trials, and produce a random variable that is the count of the resulting number of 
successes.  This count can take on any integer value in [0 .. n], so this is also a draw from a finite discrete 
distribution.  It is called the n-trial binomial distribution.  The binomial distribution has two parame-
ters: n is the number of Bernoulli trials per draw, and p is the probability that a trial outcome is 1 
(instead of 0).  This gives us a very simple PDF.

Out[ ]=

Expression Result

PDF[BinomialDistribution[n,p],k] //

Simplify[#,Assumptions→{0≤k≤n}]&

1 - p-k+n pk Binomial[n, k]

WL can also express the CDF, but the expression involves a special function that is not as simple or 
intuitive.  Still, as always for a discrete distribution, the CDF is a cumulative sum of the PDF values.  The 
next chart illustrates this for BinomialDistribution[5,0.5].
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Out[ ]=

Figure 8: Binomial Distribution (n=5, p=0.5)

Unsurprisingly, increasing the number of trials raises the mean and variance of the distribution.  The 
symbolic expression of these values confirms that both are strictly increasing in n.

Out[ ]=

Expression Result

bnp=BinomialDistribution[n,p];

{Mean @ bnp, Variance @ bnp} n p, n 1 - p p

Suppose 20 students show up for class and each has an independent 1% probability of carrying an 
infectious virus.  The number of infected students is a random variable that is distributed B[20, 0.01].  
Since the mean of the binomial distribution is n p ⩵ 0.2, less than a single student is infected in such a 
class, on average.  The probability that at least one student is infectious is nevertheless nearly 20%: 
1 - P[k ⩵ 0]⩵ 1 - 0.9920 ⩵ 0.182.
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