
The MRW Data
This section provides some descriptive insights into the dataset provided by [Mankiw.Romer.Weil-1992-
QJE]_ (MRW) in the data appendix to their paper. The data below were imported by optical scan from a
PDF of this data appendix. The replication results reported below are quite close but not perfect, so
either the scan is not perfect or their appendix contains a typo.

Create the Datasets

The MRW data comes from the real national accounts of [Summers.Heston-1988]_, covering 1960-1985.
The Y1960 and Y1980 fields hold GDP per working-age adult is provided for 1960 and 1985, and
agepop is the average annual growth rate from 1960–1985 of th3 15–64 age group (the “working age”
population). The saving rate IoY is measured as the investment proportion of GDP (s I /GDP).
Using dummy variables, these countries have been classified as belong to three groups: N, I, and O
denote the non-oil, intermediate, and OECD samples.

A dataset subtlety is that, since investment rates are not constant over time, MRW average them over
the period. In addition, as discussed below, they impose gA + δ 0.05 for every country. (They claim
plausible changes do not affect the results.)

In[]:= mrwDataLocation = "https://subversion.american.edu/aisaac/hw/data/mrw1992.csv";

(* online data *)

(* mrwDataLocation=dataFolder<>"mrw1992.csv"; *) (* for downloaded data *)

SetOptions[Dataset, MaxItems 5]; (* limit size of display *)

dsAll = SemanticImport[mrwDataLocation] (* create a dataset *)

Out[]=

△

▽

Country N I O Y1960 Y1985 GDP agepop IoY

Egypt 1 0 0 907 2160 6.0 2.5 16.3

Ethiopia 1 1 0 533 608 2.8 2.3 5.4

Gabon 0 0 0 1307 5350 7.0 1.4 22.1

Gambia 0 0 0 799 — 3.6 — 18.1

Ghana 1 0 0 1009 727 1.0 2.3 9.1

rows 11–15 of 121

This is a tabular data set, with one record per row. In WL, this means that this dataset is essentially a
list of associations, where each association maps field names (as displayed in the header) to values.
For example, consider the first record and apply the Normal command to it in order to produce the
corresponding association, which maps each key to a value.

In[]:= Normal@dsAll〚1〛

Out[]= Country Algeria , N 1, I 1, O 0, Y1960 2485,

Y1985 4371, GDP 4.8, agepop 2.6, IoY 24.1, SCHOOL 4.5

The Length command suggests that the dataset dsAll holds data on 121 countries.

In[]:= Length[dsAll]

Out[]= 121

However, scrolling through the data reveals quite a few missing values. To get a sense of how perva-
sive this is, create a query to categorize each record as to whether or not is has a missing value in any
field. To see how this will work, consider the record for Gambia (dsAll[[14]]). This reveals that a
couple values in the association are Missing[Empty].

In[]:= record14 = Normal@dsAll〚14〛

Out[]= Country Gambia , N 0, I 0, O 0, Y1960 799, Y1985 Missing[Empty],

GDP 3.6, agepop Missing[Empty], IoY 18.1, SCHOOL 1.5

When applied to an association, the MemberQ command checks the values of the association for a
pattern match. Conveniently, it is possible to match the the head Missing, so just check for that. Here
is one way to do this.

In[]:= MemberQ[_Missing]@record14

Out[]= True

It is possible to turn this into a query (Query[All,MemberQ[_Missing]]) and apply it to the dataset.
This would produce a False or True value for each record, allowing us to count up the False values in
order to determine the number of complete and incomplete records with the Counts command.
However, it is simpler to use the query Query[Counts,MemberQ[_Missing]] to do this all at one
go. Finally, remember that WL has a simplified syntax for dataset queries, as follows.

In[]:= dsAll[Counts, MemberQ[_Missing]]

Out[]=

False 104

True 17

Data Cleaning

The DeleteMissing command can filter out such records. Take a little care to read the documenta-
tion, remembering that the goal is do delete the entire record whenever any of its values are Missing.

In[]:= dsNoMissing = DeleteMissing[dsAll, 1, 1];

As expected from the previous exploration, the new dataset contains 104 records.

2 temp99.nb

In[]:= Length@dsNoMissing

Out[]= 104

Next, construct the three subsets considered by MRW by selecting based on their dummy variables.
This is called subsetting, selective set building, or filtering.

Review the documentation for the Function command. This describes the ampersand postfix short-
hand, which is commonly used by WL programmers. When a field name is a string, WL allows you to
prefix it with an octothorpe (#) in order to refer to it in a function. This makes it easy to subset the
dataset based on the provided value of a dummy variable. The following Select commands each
have a function argument that uses this notation.

In[]:= dsN = Select[#N 1 &]@dsNoMissing; (* nonoil *)

dsI = Select[#I 1 &]@dsNoMissing; (* intermediate (subset of dsN) *)

dsO = Select[#O 1 &]@dsNoMissing;

(* 22 high pop OECD countries (subset of dsI) *)

Countries whose GDP is primarily from oil production are not in any of these groups. For example,
Kuwait is not.

In[]:= Select[dsNoMissing, #Y1960 > 50000 &]

Out[]=

Country N I O Y1960 Y1985 GDP agepop IoY

Kuwait 0 0 0 77 881 25 635 2.4 6.8 9.5

The Length command can count the number of observations in each dataset. The following example
uses the Map command to compute all three lengths at one go. (The /@ operator is an infix shorthand
for the Map command, which applies a function to each element of a list.)

In[]:= Map[Length, {dsN, dsI, dsO}]

Out[]= {98, 75, 22}

Note that the intermediate countries are a subset of the non-oil countries.

In[]:= Length@Select[0 #N && 1 #I &]@dsNoMissing (* nothing is selected *)

Out[]= 0

Examine the Data

The Cross-Country Distribution of Income

The cross-country distribution of income has shifted substantially over time. On a cross-country basis,
it seems that the mean income has risen while the variance has fallen.

temp99.nb 3

In[]:= dsI[Mean, {"Y1960", "Y1985"}]

Out[]=

Y1960 3620.76

Y1985 6589.83

In[]:= dsI[Variance, {"Y1960", "Y1985"}]

Out[]=

Y1960 8 999 859.

Y1985 29 277 917.

Consider a first visualization of the income distributions.

In[]:= BoxWhiskerChart[

Transpose@dsI[All, {"Y1960", "Y1985"}],

ChartLabels {"1960", "1985"}]

Out[]=

1960 1985

0

5000

10000

15000

20000

Check whether the logarithms appear more normally distributed.

In[]:= BoxWhiskerChart[

Transpose@dsI[All, {"Y1960", "Y1985"}, Log],

ChartLabels {"1960", "1985"}]

Out[]=

1960 1985

6

7

8

9

10

4 temp99.nb

Economists often use histograms to provide a more detailed look at univariate distributions.

In[]:= dsI[Histogram, "Y1960", Log]

Out[]=

6 7 8 9
0

5

10

15

In[]:= dsI[Histogram, "Y1985", Log]

Out[]=

6 7 8 9 10
0

5

10

15

20

25

In order to make these more easily comparable, create a custom histogram function.

In[]:= hist = data Histogram[Log@data, {0.5}, PlotRange {{4, 12}, {0, 30}}];

Notice the substantial flattening and rightward shift of the distribution between 1960 and 1985.

temp99.nb 5

In[]:= Labeled[

GraphicsColumn[{

dsI[hist, "Y1960"],

dsI[hist, "Y1985"]

}, ImageSize 288],

"Log Per Capita Income, 1960 and 1985"]

Out[]=
4 6 8 10 12

0

5

10

15

20

25

30

4 6 8 10 12
0

5

10

15

20

25

30

Log Per Capita Income, 1960 and 1985

A more refined window on the same distribution is provided by a kernel-density plot. The following
chart plots both distributions.

6 temp99.nb

In[]:= pdf = data PDF@SmoothKernelDistribution[Log@data];

Plot[{

dsI[pdf, "Y1960"][x],

dsI[pdf, "Y1985"][x]},

{x, 0, 12},

PlotLegends {"1960", "1985"}]

Out[]=

2 4 6 8 10 12

0.1

0.2

0.3

0.4

1960

1985

Correlations in the Data

Recall that, given a Cobb-Douglas production function, the basic neoclassical growth model predicts
that steady-state income (per worker) depends positively on the saving rate and negatively on popula-

tion growth: yss = B
B s

d+gA+gN

α/(1-α)

. Postpone the logarithmic transformation of the RHS variables, for

reasons that will soon be evident, and consider the correlation between the saving rate, population
growth, and per-capita income.

It proves convenient to first convert the data into a matrix by stripping out the keys (with the Values
command) and then convert it to a normal matrix (with the Normal command). (As of Mathematica
version 13, this preliminary step remains necessary.) Then the Correlation command can produce
the correlations. For the intermediate countries, the raw correlations are crudely aligned with our
predictions.

In[]:= dsI[Correlation@*Normal@*Values, {"IoY", "agepop", "Y1985"}]

Out[]=

1.0 -0.393421 0.665647

-0.393421 1.0 -0.606623

0.665647 -0.606623 1.0

Use TableForm to format it nicely.

temp99.nb 7

Out[]//TableForm=

s gN Y/N

s 1. -0.393421 0.665647

gN -0.393421 1. -0.606623

Y/N 0.665647 -0.606623 1.

Next produce the corresponding scatter plots. First do this for the saving rate and per capita income.

In[]:= dsI[ListPlot, {"IoY", "Y1985"}]

Out[]=

5 10 15 20 25 30 35

5000

10000

15000

20000

This is not bad, but the lack of labels is distracting. So try again.

In[]:= ListPlot[dsI[All, {"IoY", "Y1985"}],

AxesLabel {"s (%)", "Y/N"},

PlotLabel "Income per capita (1985) vs Saving rate"]

Out[]=

5 10 15 20 25 30 35
s (%)

5000

10000

15000

20000

Y/N
Income per capita (1985) vs Saving rate

 Do the same for the growth rate of the working-age population and per capita income.

8 temp99.nb

In[]:= ListPlot[dsI[All, {"agepop", "Y1985"}],

AxesLabel {"pop. growth (%)", "income"}]

Out[]=

1 2 3 4
pop. growth (%)

5000

10000

15000

20000

income

A three-dimensional scatter plot provides an overall view of these correlations.

In[]:= ListPlot3D[dsI[All, {"IoY", "agepop", "Y1985"}],

AxesLabel {"s", "gN", "Y/N"}]

Out[]=

Next, recode the dataset. Once again, look up the Function command the ampersand postfix short-
hand, which is commonly used by WL programmers.

Recode the dataset by creating a transformation to map across each record. Note that the unobserved
d + gA is approximated by 0.05 for all countries. (See MRW for the motivation.)

temp99.nb 9

In[]:= recoder =

"ln`s" Log[#"IoY" / 100],

"ln`n" Log[0.05 + #agepop / 100],

(* recall MRW notation difference (n=d+gA+gN) *)

"ln`y" Log[#Y1985]

 &;

dsI`recode = dsI[All, recoder]

Out[]=

△

▽

ln`s ln`n ln`y

-1.42296 -2.57702 8.38275

-1.26231 -2.50104 8.20822

-2.05573 -2.64508 7.69166

-2.91877 -2.6173 6.41017

-2.08747 -2.37516 7.44073

rows 1–5 of 75

If we plot this data, the positive correlation with the saving rate is evident but the negative correlation
with the population growth rate somewhat less so.

In[]:= ListPlot3D[dsI`recode,

AxesLabel {"Log[s]", "Log[d+gA+gN]", "Log[Y/N]"},

Mesh None, InterpolationOrder 3, ColorFunction "SouthwestColors"]

Out[]=

Log-Linear Formulation for Empirical Application
This section illustrates an approach to replicating the MRW estimates.

Recall the steady state value of the Solow-Swan model with Cobb-Douglas production:

yss = B
B s
d+gL

α/(1-α)

. A logarithmic transformation produces

10 temp99.nb

Log[yss]
Log[B]

1 - α
+

α

1 - α
Log[s] -

α

1 - α
Log[d + gL] (1)

This log-linear formulation suggests a possible linear regression equation.

Log[yss] β00 + β1 Log[s] + β2 Log[d + gL] (2)

Unfortunately, estimation of this regression equation requires data on y = Y /L = Y / (AN). (This notation
differs slightly from MRW.) The value of A is unobserved. The MRW solution is to move the technology
variable to the right-hand side, as follows.

Assume the efficiency of labor grows at a constant rate: At = A0
gA t. Since Y /N = A y, we have

Log[Y /N] = Log[A] + Log[y]. This is also true in a steady state yss, where

Log[Y /N] Log[A0] + gA t + Log[yss] Log[A0] + gA t + β00 + β1 Log[s] + β2 Log[d + gL]

MRW bring this to the data as follows. First, add a country-specific stochastic element to the model by
specifying that for each country i.

LogAi,0 = a + ϵi

Here the constant a is shared across countries but ϵi is a country-specific shock. Putting this all
together yields a linear regression specification where for each country

Log[Y /N]β0 + β1 Log[s] + β2 Log[d + gA + gN] + ϵ (3)

Recall β1 = α / (1 - α) and β2 = -α / (1 - α), and note that all constant terms move into the intercept:
β0 = a + gA t + Log[B] / (1 - α).
MRW claim that data on factor shares suggest α ≈ 1 /3 so that we should expect β1 = -β2 ≈ 1 /2.

Use the data they provide for 75 “intermediate” countries to estimate this with ordinary least squares.
The model is

Log[Y /N] X.β + ϵ

Here the dependent variable is (the log of) per-capita GDP. The matrix X of exogenous variables has the
following columns: all ones (for the intercept), the log of the saving rate, and the log of 0.05 + gN.
(Recall that the unobserved d + gA is approximated by 0.05 for all countries).

Exercise

Use Mathematic to produce the first regression equation with coefficients {β00, β1, β2}.

A Solution:

In[]:= ss`y

Out[]= B
B s

d + gL

α

1-α

A logarithmic transformation:

temp99.nb 11

In[]:= ss`lny = Log[ss`y] // PowerExpand // Apart

Out[]= -
Log[B] - α Log[d + gL]

-1 + α
-
α Log[s]

-1 + α

Rewrite this by hand as follows.

In[]:= ss`lny β00 + β1 Log[s] + β2 Log[d + gL] /.

β00
Log[B]

1 - α

, β1
α

1 - α

, β2 -
α

1 - α

 // Simplify

Out[]= True

Review of Least Squares

Every choice of β produces a different vector of residuals. Let e represent the residual vector, which is a
function of β.

e=βy-X.β

We will choose β to minimize the norm of e[β]. That is,

β = argminβ e[β].e[β] (4)

This is called the least squares solution, because it is minimizes the sum of the squared residuals. Note
that the properties of matrix multiplication imply that

(y - X.β).(y - X.β) y.y - 2 y.(X.β) + β.(X.X).β

Setting the derivative with respect to β to zeros produces the first-order necessary conditions.

-2X.y+2(X.X)β0

Assuming X has full column rank, solve for β as follows.

β = (X.X)-1.X.y

Recall that for any choice of β there is a corresponding residual vector e such that y X.β + e. We can
therefore substitute for y in the first-order conditions to get

X.e 0

That is, to minimize the length of the residual vector, it must be orthogonal to the data.

Fitting a Linear Model

Next, produce a fitted model with the LinearModelFit command. Currently, the input to this com-
mand must be a matrix of values, where each row represents an observation and the last value in each
row is the dependent variable. (Unfortunately, this command does not yet work directly with dataset
objects.) Convert this dataset into a matrix by stripping out the keys with the Values command and
then converting it to a normal matrix with the Normal command.

12 temp99.nb

In[]:= dsI`recodeM = Normal@Values@dsI[All, recoder]; (* convert to matrix *)

dsI`fit = LinearModelFit[dsI`recodeM, {ln`s, ln`n}, {ln`s, ln`n}]

(* fitted model *)

Out[]= FittedModel 5.34587 -2.0172 ln`n +1.31755 ln`s

Ordinarily, we want to take a look at the parameter table for a fitted model.

In[]:= dsI`fit["ParameterTable"]

Out[]=

Estimate Standard Error t-Statistic P-Value

1 5.34587 1.54308 3.46442 0.00089895

ln`s 1.31755 0.170943 7.70758 5.38321 ×10-11

ln`n -2.0172 0.533866 -3.77848 0.000322373

Alternatively, we may prefer to look at confidence intervals. (These are 95% intervals by default.)

In[]:= dsI`fit["ParameterConfidenceIntervalTable"]

Out[]=

Estimate Standard Error Confidence Interval

1 5.34587 1.54308 {2.2698, 8.42193}
ln`s 1.31755 0.170943 {0.976785, 1.65832}
ln`n -2.0172 0.533866 {-3.08144, -0.952957}

As a crude measure of goodness of fit, we may look at the adjusted R2. Roughly speaking, this is the
proportion of the variability in the dependent variable that is explained by variation in the independent
variables. For such a simple model of such a complex phenomenon, this measure looks pretty good.

In[]:= dsI`fit["AdjustedRSquared"]

Out[]= 0.587767

One problem with the estimates is that they are not clearly related as the algebraic derivation of the
model leads us to expect. So, take a look at the restricted model.

In[]:= dsI`rfit = LinearModelFit[dsI`recodeM, {ln`s - ln`n}, {ln`s, ln`n}];

dsI`rfit["ParameterTable"]

Out[]=

Estimate Standard Error t-Statistic P-Value

1 7.09292 0.145614 48.7106 2.04004 ×10-57

-ln`n + ln`s 1.43096 0.139123 10.2855 7.57589 ×10-16

In[]:= dsI`rfit["AdjustedRSquared"]

Out[]= 0.586111

Despite the restriction, the residuals do not grow much and the adjusted R2 barely budges. Therefore,
expect not to reject this constraint. Nevertheless, we should test it.

To test the constraint, first compute the F-statistic for the model comparison. Get the sum of squares
from each model, and then use the standard formula (the proportional change in the residuals scaled
by the proportional change in the degrees of freedom).

Out[]//TableForm=

unrestricted SSE 26.8475

restricted SSE 27.3298

F statistic 1.29333

temp99.nb 13

Then find the p-value:

In[]:= 1 - CDF[FRatioDistribution[1, nI - k], fstat]

Out[]= 0.259206

This is too big to reject the restriction. We (naturally) get the same result if we use the
HypothesisTesting package.

In[]:= << HypothesisTesting`

In[]:= FRatioPValue[fstat, 1, nI - k]

Out[]= OneSidedPValue 0.259206

In sum, things look ... not bad. We get a reasonable amount of the variance explained, given that we
are using cross section data, and we cannot reject a constraint implied by theory. But the key coeffi-
cient estimate of around 3 /2 implies a value for α of around 0.6, which is almost twice the share of
capital in the national income accounts.

And there is another problem. If we restrict the analysis to just their OECD subsample, the estimates
are less encouraging. The large p-values mean we lack confident that saving rates and population
growth rates have predictive power.

In[]:= ds0`fit = LinearModelFit[Normal@Values@dsO[All, recoder], {ln`s, ln`n}, {ln`s, ln`n}]

Out[]= FittedModel 8.02061 -0.741921 ln`n +0.49989 ln`s

In[]:= ds0`fit["ParameterTable"]

Out[]=

Estimate Standard Error t-Statistic P-Value

1 8.02061 2.51789 3.18545 0.00487043
ln`s 0.49989 0.433896 1.1521 0.263572
ln`n -0.741921 0.852195 -0.870601 0.394839

Note that the model predicts both the signs and the magnitudes of s and n on Y /N , since α is capital’s

share and is known to be about 1 /3 (implying [α / (1 -α)] ≈ .5. Their cross section estimates of (1)
support the sign prediction, and they also accept the equal size of the coefficients on n and s. But yield
α ≈ .59, which is much too large. (And the s.e. is small enough to easily reject α 1 /3.)

14 temp99.nb

