
NetLogo Programming
An Introduction

Alan G. Isaac

American University

Alan G. Isaac (American University) NetLogo Programming 1 / 161

Overview Preliminaries

Contents
1 Overview

Preliminaries
2 NetLogo Models: Basic Structure

Building Models: First Steps
Code Tab
Program Structure
Plotting: First Steps
BehaviorSpace

3 The NetLogo Programming Language
Language Basics
Lists
reduce
Tasks
File-Based IO
Extensions
Arrays
Tables
Odds and Ends
Advanced Topics

Alan G. Isaac (American University) NetLogo Programming 2 / 161

Overview Preliminaries

Background

This introduction is written for Netlogo 5.
Before reading these notes, please read NetLogo Basics
You may also find the following to be useful preliminaries:

Gabriel Wurzer’s Introduction: http:
//publik.tuwien.ac.at/files/PubDat_200771.pdf

The OpenABM introduction http://www.openabm.org/book/
introduction-agent-based-modeling

Alan G. Isaac (American University) NetLogo Programming 3 / 161

./netlogo-basics.xhtml
http://publik.tuwien.ac.at/files/PubDat_200771.pdf
http://publik.tuwien.ac.at/files/PubDat_200771.pdf
http://www.openabm.org/book/introduction-agent-based-modeling
http://www.openabm.org/book/introduction-agent-based-modeling

Overview Preliminaries

Goals

After mastering this material, you will be able to:

understand the basic structure of a NetLogo program

find NetLogo “Code examples” to simplify your own programming tasks

create command procedures and reporter procedures

use NetLogo’s branching and looping constructs

modify an existing NetLogo model

build a new NetLogo model

Alan G. Isaac (American University) NetLogo Programming 4 / 161

NetLogo Models: Basic Structure Building Models: First Steps

Steps toward Making Your Own Models

1 Experiment with existing models via GUI
Models Library downloads with installation (File > Models Library)
http://ccl.northwestern.edu/netlogo/models/
other publicly available models on the web
http://www.openabm.org/

2 Modify existing models
3 Roll your own

Alan G. Isaac (American University) NetLogo Programming 5 / 161

http://ccl.northwestern.edu/netlogo/models/
http://www.openabm.org/

NetLogo Models: Basic Structure Building Models: First Steps

Modifying Models

Find a model that does something close to what you want:

make sure your intended use complies with the copyright

save it under a new name

add appropriate attribution to the header

modify the model to suit your needs

update the model documentation to match your changes

make sure all borrowed code is clearly and appropriately attributed

Alan G. Isaac (American University) NetLogo Programming 6 / 161

NetLogo Models: Basic Structure Building Models: First Steps

Structured and Commented Code

use help names for variables and procedures

create a procedure for any repeated code blocks (DRY)

turn your procedures into pure functions when possible

structure and comment your code for readability

This will be:
– helpful to others who read your code – helpful to you in both writing and
understanding your code

Alan G. Isaac (American University) NetLogo Programming 7 / 161

NetLogo Models: Basic Structure Building Models: First Steps

Simple Modifications: World Settings

You might want to change the World settings:

size

location of 0, 0

torus or rectangle

patch size (this and size determine size of world screen)

Alan G. Isaac (American University) NetLogo Programming 8 / 161

NetLogo Models: Basic Structure Building Models: First Steps

New Model: Key Decisions

system to be modeled

what do the agents represent?

what are the rules of action and interaction?

how will you approximate these rules in the modeling environment?

if your model repeatedly runs a schedule, how much time is represented
by one iteration (e.g., by 1 tick)?

Alan G. Isaac (American University) NetLogo Programming 9 / 161

NetLogo Models: Basic Structure Building Models: First Steps

Basic Model

A basic model will have:

setup procedure

go procedure

For example:
setup

initialize global variables

initialize any agents (e.g., the properties of patches and turtles)

initialize output files

go

run one interation of the model

update output files

Alan G. Isaac (American University) NetLogo Programming 10 / 161

NetLogo Models: Basic Structure Building Models: First Steps

Basic GUI Elements: Graphs

A simple model may add:
graphs

graphs can dynamically monitor a single value (plot), pairs of values
(plotxy), or collections of values (histogram)

easy to add in NetLogo GUI

Alan G. Isaac (American University) NetLogo Programming 11 / 161

NetLogo Models: Basic Structure Building Models: First Steps

Basic GUI Elements: Sliders, Choosers, and Switches

A simple model may also add:
sliders, choosers, and switches:

sliders, choosers, and switches provide users with GUI control over model
parameters (e.g., the number of agents in the model)

startup procedure:

If you name a procedue startup, it will be run when your model first
loads in the GUI. This is the right place to set default values for your
sliders.

Note
For experiements using BehaviorSpace, startup run only once: http:
//ccl.northwestern.edu/netlogo/docs/versions.html)

Alan G. Isaac (American University) NetLogo Programming 12 / 161

http://ccl.northwestern.edu/netlogo/docs/versions.html
http://ccl.northwestern.edu/netlogo/docs/versions.html

NetLogo Models: Basic Structure Building Models: First Steps

Using Sliders and Choosers

Global variables can be declared in the Interface (instead of in the Code
tab).
NetLogo allows using a “right click” on the Interface window to produce a
context menu that can add GUI elements.
Interface globals (set in sliders, switches, and choosers) are a convenience
feature with downsides as well as upsides.

Alan G. Isaac (American University) NetLogo Programming 13 / 161

NetLogo Models: Basic Structure Building Models: First Steps

Sliders and Choosers: Some Upsides

Allow easy experimentation with a model.

Designed to interact well with BehaviorSpace (as we will see later).

Alan G. Isaac (American University) NetLogo Programming 14 / 161

NetLogo Models: Basic Structure Building Models: First Steps

Sliders and Choosers: Some Downsides

Interface variables are not declared in the Code tab, so while you
are coding they are less visible. (However, if you code with a text editor,
they are visible in the .nlogo file, as plain text.)

An Interface variable does not include a default value, so if a user
resets the slider and then saves your model, it saves a different value
than you intended. (So it is a good idea to use NetLogo’s special
startup procedure to set default values, perhaps by calling a
reset-defaults procedure.)

Alan G. Isaac (American University) NetLogo Programming 15 / 161

NetLogo Models: Basic Structure Code Tab

Basic Structure

The Code tab can contain

comments

declarations

procedures (commands and reporters)

Alan G. Isaac (American University) NetLogo Programming 16 / 161

NetLogo Models: Basic Structure Code Tab

Comments

a semicolon (;) begins a comment for remainder of line

be sure to state the author and date in a comment at the beginning of
each program

Alan G. Isaac (American University) NetLogo Programming 17 / 161

NetLogo Models: Basic Structure Code Tab

Declarations Section

The declarations section precedes the procedures section.
The two most common declarations are global variables and agent attributes.

Alan G. Isaac (American University) NetLogo Programming 18 / 161

NetLogo Models: Basic Structure Code Tab

Declaration of Global Variables

globals [...] declares a list of global variables (may be thought of
as observer-owns)

Note: other global variables declared in sliders. We will call those “interface
globals”.

Alan G. Isaac (American University) NetLogo Programming 19 / 161

NetLogo Models: Basic Structure Code Tab

Global Variables

each global variable must be declared

a global variable can be declared in the declarations section or in the GUI
(e.g., in a slider or chooser)

every agent can access or set a global variable

values are assigned (or reassigned) with the set command

Alan G. Isaac (American University) NetLogo Programming 20 / 161

NetLogo Models: Basic Structure Code Tab

Declaration of Instance Attributes

patches-own [...]: list of patch attributes

turtles-own [...]: list of turtle attributes

links-own [...]: list of link attributes

can also declare breed attributes

Alan G. Isaac (American University) NetLogo Programming 21 / 161

NetLogo Models: Basic Structure Code Tab

Procedures Section

The procedures section only contains procedures (user-written commands and
reporters). It comes after the declarations section.
command procedure

to my-procedure ... end

body contains NetLogo commands

reporter procedure

to-report my-reporter ... end

returns a value

must use the report command

Alan G. Isaac (American University) NetLogo Programming 22 / 161

NetLogo Models: Basic Structure Code Tab

Review: Procedures

Enter the following in the Code window:

globals [nHeads]

to setup
clear-all

end

to go
set nHeads (nHeads + fairCoinFlip)

end

to-report fairCoinFlip
report ifelse-value (random-float 1 < 0.5) [1] [0]

end

Alan G. Isaac (American University) NetLogo Programming 23 / 161

NetLogo Models: Basic Structure Code Tab

Review: Procedures ...

Next, return to the Command Center and enter the following lines:

setup
show nHeads
go
show nHeads

Note: clear-all calls clear-globals, which sets all global variables to
their default value. The default value of variables declared with globals is 0.

Alan G. Isaac (American University) NetLogo Programming 24 / 161

NetLogo Models: Basic Structure Code Tab

Placeholders

When you are writing code, you may wish to refer to a procedure you have not
written yet. If you do not define a procedure with this name, the NetLogo
syntax checker will complain.
The solution is to define an empty procedure or a procedure that warns you
that it needs to be written.
Such placeholders and warnings are sometimes called “scaffolding”. The idea
is that assist you in construction of your model, but you intend to remove them
from the final product.

Alan G. Isaac (American University) NetLogo Programming 25 / 161

NetLogo Models: Basic Structure Code Tab

Code Tab: Basic Structure

In the Code tab, outside of code blocks, we should only find:

comments

NetLogo keywords (see below)

<instances>-own (see below)

Comment: many of the NetLogo documentation examples are slightly
misleading on this score. E.g., http://ccl.northwestern.edu/
netlogo/docs/dictionary.html#breed

Alan G. Isaac (American University) NetLogo Programming 26 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#breed
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#breed

NetLogo Models: Basic Structure Code Tab

Keywords

http://ccl.northwestern.edu/netlogo/docs/dictionary.
html#Keywords

__includes http://ccl.northwestern.edu/netlogo/docs/
dictionary.html#includes

extensions http://ccl.northwestern.edu/netlogo/docs/
extensions.html

globals

breed, directed-link-breed, undirected-link-breed

patches-own, turtles-own, <breeds>-own, links-own, <link-breeds>-own

to, to-report, end

Alan G. Isaac (American University) NetLogo Programming 27 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#Keywords
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#Keywords
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#includes
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#includes
http://ccl.northwestern.edu/netlogo/docs/extensions.html
http://ccl.northwestern.edu/netlogo/docs/extensions.html

NetLogo Models: Basic Structure Program Structure

Code Examples

The NetLogo Models Library includes a collection of code examples. Be sure
to look at these for hints whenever you get stuck.

Alan G. Isaac (American University) NetLogo Programming 28 / 161

NetLogo Models: Basic Structure Program Structure

Basic Program Structure

Even the simplest NetLogo programs traditionally include the following
structure:

globals declaration of global variables using the globals keyword

setup a procedure named setup that initializes the global varaibles
and does other setup operations

go a procedure that runs one iteration of the model; this holds the
“schedule” for your program

Alan G. Isaac (American University) NetLogo Programming 29 / 161

NetLogo Models: Basic Structure Program Structure

Example: Minimal Program Structure

globals [gvar01 gvar02]

to setup
clear-all

end

to go
do-stuff

end

to do-stuff
...

end

Alan G. Isaac (American University) NetLogo Programming 30 / 161

NetLogo Models: Basic Structure Program Structure

Program Structure: Setup

As soon as you add any complexity to your model, you will want to break the
model set up into parts:

the global variables,
the patches
the turtles

So your model set up procedure will often look like:

to setup
ca
setupGlobals
setupPatches
setupTurtles
reset-ticks

end

Note: NetLogo already has a setup-plots command, which in turn is
called by reset-ticks. If you want to set up your plots in the Code tab,
use the name setupPlots or init-plots instead.

Alan G. Isaac (American University) NetLogo Programming 31 / 161

NetLogo Models: Basic Structure Program Structure

Application: Minimal Program Structure

globals [nHeads]

to setup
clear-all ;sets nHeads to 0

end

to go
repeat 50 [
set nHeads (nHeads + fairCoinFlip01)

]
end

to-report fairCoinFlip01
;; fill in procedure body

end

Alan G. Isaac (American University) NetLogo Programming 32 / 161

NetLogo Models: Basic Structure Program Structure

Parameters for Commands and Reporters

Procedures can specifiy formal parmeters in brackets after the name. Here is a
silly reporter that illustrates the use of parameters.

to-report is-equal? [#x #y]
report (#x = #y)

end

Note that parameter names are strictly local to the procedure, which means
you cannot refer to them outside the procedure body.

Alan G. Isaac (American University) NetLogo Programming 33 / 161

NetLogo Models: Basic Structure Program Structure

Hash Convention for Formal Parameters

In these notes, we will adopt the helpful convention that parameter names
begin with a hash mark (#). This is just a convention; it is not required by
NetLogo.

Alan G. Isaac (American University) NetLogo Programming 34 / 161

NetLogo Models: Basic Structure Program Structure

Write Once Use Anywhere

After you copy is-equal? into your Code tab, you can use it elsewhere in
your code. You can even use it in the Command Center. E.g., go to the
Command Center and type in:

show is-equal? 2 3

The observer will show you the value false. Note how the reporter
"consumes" two arguments (the 2 and the 3), because we defined it to do so.
Note that you do not put the arguments in brackets, even though you must use
brackets in the definition.
See: http://ccl.northwestern.edu/netlogo/2.0/docs/
programming.html#procedures2

Alan G. Isaac (American University) NetLogo Programming 35 / 161

http://ccl.northwestern.edu/netlogo/2.0/docs/programming.html#procedures2
http://ccl.northwestern.edu/netlogo/2.0/docs/programming.html#procedures2

NetLogo Models: Basic Structure Program Structure

Parameters for Procedures (another example)

Suppose we want to simulate a coin flip with a specified probability.

to-report coinFlip01 [#p]
report ifelse-value (random-float 1 < #p) [1] [0]

end

Once you copy that to your Code tab, you can use it like this:

show coinFlip01 0.3

Note
By convention, the names of formal parameters begin with a hashmark (#).

Alan G. Isaac (American University) NetLogo Programming 36 / 161

NetLogo Models: Basic Structure Program Structure

Procedures Can Call Procedures

You can define new procedures in terms of existing procedures.

to-report fairCoinFlip01
report coinFlip 0.5

end

Alan G. Isaac (American University) NetLogo Programming 37 / 161

NetLogo Models: Basic Structure Program Structure

Style Guide

Currently there is no official NetLogo style guide. The NetLogo Models Library
is stylistically fairly consistent, so it can serve as a guide by example.
A course-related guide is available at
http://ccl.northwestern.edu/courses/mam2005/
styleguide.htm
Contrary to that style guide, I recommend:

do not use spaces in your file names

use camel-case instead of hyphenated long names, beginning with a
lower-case letter

While hyphenated names are a convention in Lisp derived languages, they are
not possible in many other languages.

Note
Remember that NetLogo is case insensitive, so case conventions are purely
for reader convenience.

Alan G. Isaac (American University) NetLogo Programming 38 / 161

http://ccl.northwestern.edu/courses/mam2005/styleguide.htm
http://ccl.northwestern.edu/courses/mam2005/styleguide.htm

NetLogo Models: Basic Structure Program Structure

Common Styles: Naming

Here are some style guidelines that reflect some fairly common practices.

do not use underscores in names

name boolean variables with a question mark: attempted-task?

name command procedures with nouns and reporter procedures with
verbs

start parameter names with a hash and local variable names with an
underscore:

to-report sq [#x]
let _xsq (#x * #x)
report _xsq

end

breed names should be plural

Alan G. Isaac (American University) NetLogo Programming 39 / 161

NetLogo Models: Basic Structure Program Structure

Common Styles ...

indent code blocks by 2 spaces per level, including procedure and
reporter bodies;

do not use tab characters (except possibly in output)

declare variables (globals, patches-own, etc.) one per line, with an
explanatory comment for each variable

identify procedure context with a comment:

to move ;; turtle procedure
right random-float 360
forward 1

end

Alan G. Isaac (American University) NetLogo Programming 40 / 161

NetLogo Models: Basic Structure Program Structure

Common Styles ...

avoid using who numbers

put branching conditions in parentheses

open code-block brackets at the end of a line; close them on their own
line, except between the if and else clauses, e.g.,

ifelse (this?) [
do-A

][
do-B

]

Alan G. Isaac (American University) NetLogo Programming 41 / 161

NetLogo Models: Basic Structure Program Structure

Looping: repeat

The repeat primitive allows you to repeat a command block as many times
as you wish. E.g., enter the following at the Command Center.

let %ct 0 repeat 50 [show %ct set %ct (%ct + 1)]

In the Command Center, the observer shows you the whole numbers up 0-49.
As another example, at the Command Center enter:

clear-all
repeat 50 [set nHeads (nHeads + fairCoinFlip)]
show nHeads

Note: clear-all sets all global variables to their default value of 0.

Alan G. Isaac (American University) NetLogo Programming 42 / 161

NetLogo Models: Basic Structure Program Structure

Exiting a Loop: stop

At the Command Center enter:

let %ct 0 repeat 50 [show %ct set %ct (%ct + 1) stop]

The stop command exits the loop, so in the Command Center, the observer
only shows 0.

Alan G. Isaac (American University) NetLogo Programming 43 / 161

NetLogo Models: Basic Structure Program Structure

Exiting a Procedure: stop

We can use stop to exit a procedure, but stop only exits the procedure that
executes it. To illustrate, add the following to the Code tab:

to test
show 0 stop-me show 2

end

to stop-me
stop show 1

end

Go to the Command Center and enter test. You will see 0 and 2 printed.

Alan G. Isaac (American University) NetLogo Programming 44 / 161

NetLogo Models: Basic Structure Program Structure

Looping: loop

Run a list of commands repeatedly (potentially forever):

loop [commands]

This is obviously a dangerous construct, but if one of the commands eventually
calls stop, you will exit the loop.

loop [if (ticks > 100) [stop] tick]

Use of loop is not quite like use of a forever button. In NetLogo, we usually
use a forever button in order to repeat something forever. We can click again
on a forever button to exit the loop. If the button calls a procedure that
executes the stop command, that will also exit the forever-button loop.
However, procedures do not pass on the stop command to loop: to break out
of loop, stop must be called by a command directly in the loop body.

Alan G. Isaac (American University) NetLogo Programming 45 / 161

NetLogo Models: Basic Structure Program Structure

Stopping Forever Buttons

NetLogo models often have a go command that is called by a forever button. If
you want to stop on a condition, rather than by again clicking the button, use
stop conditionally at the top of your procedure:

to go
if condition? [stop]
...

end

This prevents the user from forcing additional step in the model by repeatedly
pressing the button.

Alan G. Isaac (American University) NetLogo Programming 46 / 161

NetLogo Models: Basic Structure Program Structure

Code Analysis

scaffolding (print statements)

inline tests (if tests with error statements)

test procedures (e.g., test-setup and test-go)

procedure timing (e.g., reset-timer myproc print timer)

profiling (see the profiler“ extension) http://ccl.northwestern.
edu/netlogo/docs/profiler.html

Alan G. Isaac (American University) NetLogo Programming 47 / 161

http://ccl.northwestern.edu/netlogo/docs/profiler.html
http://ccl.northwestern.edu/netlogo/docs/profiler.html

NetLogo Models: Basic Structure Program Structure

NetLogo Source (.nls) Files

In support of DRY programming, NetLogo allows a model to load a .nls file
declaring variables, breeds, and (most importantly) procedure definitions.
http://ccl.northwestern.edu/netlogo/5.0/docs/
interface.html#includes
Unfortunately, as of NetLogo 5.1, the process for creating a new .nls file in
the Code tab is rather awkward. For a description, see
http://netlogo-users.18673.x6.nabble.com/
Using-includes-td4869749.html

Alan G. Isaac (American University) NetLogo Programming 48 / 161

http://ccl.northwestern.edu/netlogo/5.0/docs/interface.html#includes
http://ccl.northwestern.edu/netlogo/5.0/docs/interface.html#includes
http://netlogo-users.18673.x6.nabble.com/Using-includes-td4869749.html
http://netlogo-users.18673.x6.nabble.com/Using-includes-td4869749.html

NetLogo Models: Basic Structure Plotting: First Steps

Types of Plots

NetLogo builds in the following plot types:

plot you provide the y value; the x values are automatically
incremented.

plotxy you provide the x and y values

histogram you provide a collection of values as a list

Alan G. Isaac (American University) NetLogo Programming 49 / 161

NetLogo Models: Basic Structure Plotting: First Steps

Exercise: Simple plot

In the Interface tab, add a plot with the pen update command plot
nHeads.
In the Code tab, create a coin-flipping program that has the following go
procedure:

to go
set nHeads 0
repeat 50 [set nHeads (nHeads + flipCoin)]
update-plots

end

Clearly this is not the complete program: you need to declare nHeads as a
global variable, define a flipCoin reporter procedure, and define an
appropriate setup procedure.
In the Command Center, run your setup procedure, and then run your go
procedure 100 times.

Alan G. Isaac (American University) NetLogo Programming 50 / 161

NetLogo Models: Basic Structure Plotting: First Steps

Basic Concepts: Plots

Review plots in NetLogo Basics.
For the moment, we will only change the pen update commands.

pen update commands commands to be executed when the plot updates

setup-plots NetLogo primitive to initialize all plots. Often comes at the
end of our setup procedure. (However, it is more common to
use reset-ticks, which calls setup-plots.)
http://ccl.northwestern.edu/netlogo/docs/
dictionary.html#reset-ticks

update-plots NetLogo primitive to update all plots. Often comes at the
enf of our go procedure. (However, it is more common to use
tick, which calls update-plots.)
http://ccl.northwestern.edu/netlogo/docs/
dictionary.html#tick

In the NetLogo Models Library, under Code Examples, see Plotting
Example.

Alan G. Isaac (American University) NetLogo Programming 51 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#reset-ticks
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#reset-ticks
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#tick
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#tick

NetLogo Models: Basic Structure Plotting: First Steps

Temporary Plot Pens

If you want to add background features (like a 45 degree line) to a plot, you
can use a temporary plot pen during setup.

;;plot 45 degree line from (0,0) to (1,1)
create-temporary-plot-pen "equal"
plotxy 0 0 plotxy 1 1

Alan G. Isaac (American University) NetLogo Programming 52 / 161

NetLogo Models: Basic Structure Plotting: First Steps

export-plot

The export-plot command writes a comma-separated values file. There
data written includes the x and y values of all points plotted by all the plot pens
in the plot.
Specify the plotname as a string: it is the same as whatever you entered as the
name in the plot dialogue (which is used as the title of your plot).
The data is written to an external file. You specify the filename as a string. Use
forward slashes.
See: http://ccl.northwestern.edu/netlogo/docs/
dictionary.html#export-plot

Alan G. Isaac (American University) NetLogo Programming 53 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#export-plot
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#export-plot

NetLogo Models: Basic Structure Plotting: First Steps

Plot Commands

most-used plot commands: histogram plot plotxy set-current-plot
set-current-plot-pen set-plot-pen-mode

often-used plot commands: set-histogram-num-bars set-plot-pen-color
set-plot-x-range set-plot-y-range

autoplot (automatic axes range adjustemnts): autoplot? auto-plot-off
auto-plot-on

clear-plot related commands: clear-all-plots clear-plot plot-pen-reset

other plot commands: http://ccl.northwestern.edu/netlogo/
docs/dictionary.html#plottinggroup

Alan G. Isaac (American University) NetLogo Programming 54 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#plottinggroup
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#plottinggroup

NetLogo Models: Basic Structure Plotting: First Steps

Simplest Histogram

A histogram plots the frequency of occurence of items in a list. Add a new plot
in the Interface tab and replace the default pen update commands with
histogram [1 2 2 3 3 3]. Click OK then then in the Command
Center enter ca update-plots.
Note that by default histogram produces a line plot. For the corresponding
bar chart, you need to change the pen-mode. At the Command Center, you
can enter set-plot-pen-mode 1. But you can set the pen mode in
NetLogo’s plot dialogue.

Alan G. Isaac (American University) NetLogo Programming 55 / 161

NetLogo Models: Basic Structure Plotting: First Steps

Dynamic Histogram

If we have a histogram of turtle colors, we would like our histogram to be
redrawn when our turtles change colors.
In the NetLogo Models Library, under Code Examples, see Histogram
Example.
Note that the tick command calls update-plots. Note that the x-axis is
not autoscaled; you must scale in appropriately be histogramming your data.

Alan G. Isaac (American University) NetLogo Programming 56 / 161

NetLogo Models: Basic Structure Plotting: First Steps

Simple Histogram

Suppose we have turtles classified by color: red, green, or blue. After using
the GUI to create a plot titled "Class Histogram", we can:

to update-class-histogram
set-current-plot "Class Histogram"
histogram map
[position ? [red green blue]]
([color] of turtles)

end

Alan G. Isaac (American University) NetLogo Programming 57 / 161

NetLogo Models: Basic Structure Plotting: First Steps

Custom Histogram

If we would like to color-code our bars, we cannot use histogram. Instead
we plot a bar for each value.

to update-class-histogram
set-current-plot "Class Histogram"
plot-pen-reset
set plot-pen-mode 1 ;; bar mode
set-plot-pen-color red
plot count turtles with [color = red]
set-plot-pen-color green
plot count turtles with [color = green]
set-plot-pen-color blue
plot count turtles with [color = blue]

end

Alan G. Isaac (American University) NetLogo Programming 58 / 161

NetLogo Models: Basic Structure BehaviorSpace

Parameter Sweep

parameter sweep systematic variation of scenarios
standard method for exploring the parameter space

BehaviorSpace a NetLogo tool for easily implementing a parameter sweep

Alan G. Isaac (American University) NetLogo Programming 59 / 161

NetLogo Models: Basic Structure BehaviorSpace

Using BehaviorSpace

Tools > Behavior Space > New

give your experiment a name
specify multiple values of parameters for your experiment

list the values explicitly, or use a range [start increment end]
["myparam" 0 1 2 3], or ["myparam" [0 1 3]]
you can vary the world size! (not a parameter in an ordinary sense)

fill in the experiment information

click “ok” when you are done

save your NetLogo model (this will save your experiment settings)
run the experiment by pressing the Run button

you will be prompted for how to save your data before the experiment runs;
usually you should “table” output.
be sure to include the .csv extension if you enter a filename; NetLogo does
not add it for you.
it runs much more quickly if you uncheck “update graphics” and “update
plots and monitors”.

Alan G. Isaac (American University) NetLogo Programming 60 / 161

NetLogo Models: Basic Structure BehaviorSpace

Behavior Space ...

Repetitions the number of replicates for each scenario (i.e., for each
parameter combination)

reporters One reporter per line, for each value you want to record.

Setup commands: usually just your setup procedure

Go commands: the command(s) to run one step of your model; usually just
go or step, but sometimes e.g. repeat 10 [go]. (Your
recording reporters are called after each step.)

Stop condition: a reporter that reports true when the run should stop (or just
set the number of steps as a Time Limit)

Alan G. Isaac (American University) NetLogo Programming 61 / 161

NetLogo Models: Basic Structure BehaviorSpace

BehaviorSpace Cautions

BehaviorSpace sets the values of globals variables before executing its
setup and go commands. So if your setup commands set the value
of these variables, the BS values will no longer apply.
Example: if you use clear-all in your setup, you will reset to 0 all
the non-interface globals that BehaviorSpace has set. (Note:
clear-all does not reset your sliders or choosers, so BehaviorSpace
works well with these.)

If you set the value of random-seed in BehaviorSpace, it is reset to
that value before each run (not once per experiment). Workaround: set
the value during setup as a function of
behaviorspace-run-number. As a simplest example:
random-seed behaviorspace-run-number.

Alan G. Isaac (American University) NetLogo Programming 62 / 161

NetLogo Models: Basic Structure BehaviorSpace

BehaviorSpace Output Formats

spreadsheet format written at the end of the experiment (data held in memory)
tries to be more “human readable”

table format written as the data is generated (data not held in memory)
use this for experiments generating large datasets

Alan G. Isaac (American University) NetLogo Programming 63 / 161

The NetLogo Programming Language Language Basics

Review of Language Basics

reassignment: set a b

use parentheses to control order of operations

use brackets [] for code blocks

white space ignored after initial space

procedures (commands and reporters; see above)

Alan G. Isaac (American University) NetLogo Programming 64 / 161

The NetLogo Programming Language Language Basics

Basic Data Types

numbers all numbers are floating point (as in Javascript)

lists ordered, immutable collection of objects; concatenate with
sentence

strings immutable sequence of characters; create with double quotes;
concatenate with word

booleans true or false; reported by comparisons

Alan G. Isaac (American University) NetLogo Programming 65 / 161

The NetLogo Programming Language Language Basics

Agentsets

turtlesets

patchsets

linksets

Alan G. Isaac (American University) NetLogo Programming 66 / 161

The NetLogo Programming Language Language Basics

Extension Data Types

tables

arrays

Alan G. Isaac (American University) NetLogo Programming 67 / 161

The NetLogo Programming Language Language Basics

Language Surprises

use (- numbername), not -numbername

case-insensitive

necessary white space: set a (3 * b)

Alan G. Isaac (American University) NetLogo Programming 68 / 161

The NetLogo Programming Language Language Basics

Recent Changes

see the Transition Guide: http://ccl.northwestern.edu/
netlogo/docs/transition.html

reset-ticks: as of version 5, you must explicitly call reset-ticks
to initialize the ticks counter; it is no longer called by clear-all

NetLogo 5: can no longer concatenate strings with +; use word

random-one-of was renamed one-of

Alan G. Isaac (American University) NetLogo Programming 69 / 161

http://ccl.northwestern.edu/netlogo/docs/transition.html
http://ccl.northwestern.edu/netlogo/docs/transition.html

The NetLogo Programming Language Language Basics

Language Conventions

Logical variables end in ?

procedure body indented

two semicolons to start comment ;;

Alan G. Isaac (American University) NetLogo Programming 70 / 161

The NetLogo Programming Language Language Basics

Ticks

NetLogo includes a built-in tick counter:

print ticks ;; display current value of ticks
tick ;; increment ticks (by 1)
print ticks ;; display current value of ticks
reset-ticks ;; reset ticks to 0
print ticks ;; display current value of ticks

Alan G. Isaac (American University) NetLogo Programming 71 / 161

The NetLogo Programming Language Language Basics

Booleans and Comparisons: Numerical Issues

Be careful with numerical comparisons when you are not working with
integers. Computers must work with approximations of fractions. The value of
(0.1 + 0.2) is 0.30000000000000004, so the value of (0.1 +
0.2 = 0.3) is false, and the value of (0.1 + 0.2 > 0.3) is true.

Alan G. Isaac (American University) NetLogo Programming 72 / 161

The NetLogo Programming Language Language Basics

Control Flow: Branching

http://ccl.northwestern.edu/netlogo/docs/dictionary.
html#controlgroup
Booleans can be used for conditional code execution.
Suppose condition is a boolean variable (i.e., has a value of either true
or false). We can use such a variable to determine the flow of control in a
NetLogo program.

if (condition) [commands]

ifelse (condition) [commands4true] [commands4false]

ifelse-value (condition) [reporter4true] [reporter4false]

Alan G. Isaac (American University) NetLogo Programming 73 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#controlgroup
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#controlgroup

The NetLogo Programming Language Language Basics

Booleans and Conditional Branching

E.g., noting that random-float 1 is between zero and one:

if (random-float 1 < 0.5) [show "heads"]

We might also like the observer to print “tails” for larger outcomes. We can use
the ifelse construct to do this.:

ifelse (random-float 1 < 0.5)
[show "heads"]
[show "tails"]

Note that to create a string, we bracket a sequence of characters with double
quotes.

Alan G. Isaac (American University) NetLogo Programming 74 / 161

The NetLogo Programming Language Language Basics

Example: Conditional Setting of Global Variables

start NetLogo

In the Code window enter globals [nHeads nTails]

Go to the Command Center and enter the following code:

ifelse (random-float 1 < 0.5)
[set nHeads (nHeads + 1)]
[set nTails (nTails + 1)]

show nHeads
show nTails

Alan G. Isaac (American University) NetLogo Programming 75 / 161

The NetLogo Programming Language Language Basics

ifelse-value

NetLogo also provides the unusual ifelse-value primitive, which allows
condition determination of a value.

ask turtles [
set color ifelse-value (wealth < 0) [red] [blue]

]

http://ccl.northwestern.edu/netlogo/docs/dictionary.
html#ifelse

Alan G. Isaac (American University) NetLogo Programming 76 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#ifelse
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#ifelse

The NetLogo Programming Language Language Basics

Control Flow: Looping

ask agentset [commands]

foreach list [commands]

repeat

stop

while

loop (forever!)

Alan G. Isaac (American University) NetLogo Programming 77 / 161

The NetLogo Programming Language Language Basics

Control Flow: Other

ask-concurrent

carefully (and error-message)

every

run runresult

to to-report

wait

with-local-randomness

without-interruption

Alan G. Isaac (American University) NetLogo Programming 78 / 161

The NetLogo Programming Language Language Basics

Operators: Math, Logic and Comparison

math

+, -, /, ^
white space delimited (e.g., 3 + 2 not 3+2)
all are binary, but can write (- x) for 0 - x

logical operators (operate on booleans)

and, not, or, xor

comparison

>, >=, <, <=, =, !=

Alan G. Isaac (American University) NetLogo Programming 79 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#Symbols

The NetLogo Programming Language Language Basics

Global Variables

have global scope (i.e., are available anywhere in the program)
must be declared before used

in the declarations section, or
by adding a button

use set a b to change the value of variable a

Alan G. Isaac (American University) NetLogo Programming 80 / 161

The NetLogo Programming Language Language Basics

Local Variables

Local variable can be created with let inside a procedure body. They are
invisible outside their code block.1

let a b declares a new local variable a and assigns it the value of b

set a b changes the value of a to the value of b

scope restricted to code block in which declared

A procedures formal parameters are also local to the procedure.

1However, see the discussion below in Tasks Are Closures.
Alan G. Isaac (American University) NetLogo Programming 81 / 161

The NetLogo Programming Language Lists

NetLogo Lists: Basic Concepts

NetLogo lists can contain a variety of items in a fixed order.
Lists are:

ordered

immutable

potentially heterogeneous (e.g., numbers and strings)

Examples:

let lst00 [] ;; empty list
let lst01 [0 1] ;; list of numbers
let lst02 ["zero" "one"] ;; list of strings
let lst03 [0 1 "zero" "one"] ;; list of numbers and strings

Alan G. Isaac (American University) NetLogo Programming 82 / 161

The NetLogo Programming Language Lists

Zero-Based Indexing

Because lists are ordered, it makes sense to ask what item is at a particular
location. We do this with the item primitive.
Indexing is zero-based: the first index is 0.

item index list return item index of list (e.g., item 0 [3 2 1] is 3)

Alan G. Isaac (American University) NetLogo Programming 83 / 161

The NetLogo Programming Language Lists

Constructing Lists

The list primitive provides a general list constructor (with parentheses):

(list) ;;emtpy list
(list 0 "one" myvar) ;;list of three items

A shorter bracket notation can be used with literals (but not variables):

[] ;; emtpy list
[0 "one"] ;; list of two items

Alan G. Isaac (American University) NetLogo Programming 84 / 161

The NetLogo Programming Language Lists

List Length

The length of a list is the number of items in the list.

length lst reports the length of lst

empty? lst reports true if lst is empty

Alan G. Isaac (American University) NetLogo Programming 85 / 161

The NetLogo Programming Language Lists

Adding Items to a List

fput item list prepends item to list (e.g., fput 1 [2 3])

fput item list appends item to list (e.g., lput 3 [1 2])

sentence list1 list2 concatenates list1 and list2 (e.g., (sentence [1
2] [3]))

Note: in each case, a new list is returned: [1 2 3].

Alan G. Isaac (American University) NetLogo Programming 86 / 161

The NetLogo Programming Language Lists

List Members

http://ccl.northwestern.edu/netlogo/docs/dictionary.
html#listsgroup

member? value list report true if value is in list

first list report first list item

last report last list item

item index list report item at (zero-based) index

one-of list report a random item of list

position item list report the index of item in list

Alan G. Isaac (American University) NetLogo Programming 87 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#listsgroup
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#listsgroup

The NetLogo Programming Language Lists

Creating Lists with n-values

Newcomers to NetLogo often find it puzzling to use n-values. Read the
documentation carefully. http://ccl.northwestern.edu/
netlogo/docs/dictionary.html#n-values
Consider the command n-values 5 [?]. This reports [0 1 2 3 4]: a
list of 5 successive values, starting at 0.
Note that n-values takes two arguments: an integer size (here 5), and a
“reporter task” (here [?]).

Alan G. Isaac (American University) NetLogo Programming 88 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#n-values
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#n-values

The NetLogo Programming Language Lists

Question Mark

The question mark in the reporter task is a special NetLogo variable that
cannot be set directly by the user. The values taken by this special variable are
determined by the command. When we use the n-values command, the
question mark will take on successive integer values, starting at 0. (The
number of values is determined by the size argument.)
These successive values that NetLogo assigns to ? determine the successive
values of the reporter task, which constitute the reported list.
Example: to produce a list of the squares of 0 through 9 we can use
n-values 10 [? * ?].
You are not required to use the question mark if you do not need it.
Example: n-values 5 [random 2]

Alan G. Isaac (American University) NetLogo Programming 89 / 161

The NetLogo Programming Language Lists

Iterating over a List with foreach

run commands for each item of a list

syntax: foreach *list* [*commands*]

simple example:

let range n-values 10 [?]
foreach range [show ? * ?]

or equivalently:

foreach n-values 10 [?] [show ? * ?]

http://ccl.northwestern.edu/netlogo/docs/dictionary.
html#foreach

Alan G. Isaac (American University) NetLogo Programming 90 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#foreach
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#foreach

The NetLogo Programming Language Lists

Question Mark

Note: ? is special name that is sequentially assigned to each item in the
foreach sequence. It can also be written as ?1.
http://ccl.northwestern.edu/netlogo/docs/dictionary.
html#ques

Alan G. Isaac (American University) NetLogo Programming 91 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#ques
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#ques

The NetLogo Programming Language Lists

Cumulative Sum using foreach

to-report partial-sums [#nums]
let total 0
let result []
foreach #nums [
set total total + ?
set result lput total result

]
report result

end

Alan G. Isaac (American University) NetLogo Programming 92 / 161

The NetLogo Programming Language Lists

Simple Function Plot

To plot a function f, we need to decide on a domain over which to plot it, and
how many points to plot. For example:

let domain n-values 101 [? / 100]
foreach domain [plotxy ? f ?]

Exercise: Enter the following in your Code tab and plot it.

to-report f [#x]
report 3.75 * #x * (1 - #x)

end

Alan G. Isaac (American University) NetLogo Programming 93 / 161

The NetLogo Programming Language Lists

foreach Example: Multiple Lists

The foreach command can be used with multiple lists of identical length.
The first result is computed from the first elements of the arguments. The
second result is computed from the second elements of the arguments. For
example:

(foreach [1 2] [3 4] [5 6] [print ?1 + ?2 + ?3])

Note the required parentheses.
Note: ?1, ?2, and ?3 are special names that are sequentially assigned to
each item in the first, second, and third foreach sequence.

Alan G. Isaac (American University) NetLogo Programming 94 / 161

The NetLogo Programming Language Lists

Operating on Lists

http://ccl.northwestern.edu/netlogo/docs/dictionary.
html#listsgroup

sublists

sublist, remove-duplicates
remove item list, remove-item int list
but-first, but-last
n-of int list

new lists

replace-item int list
fput, lput, sentence
n-values int [reporter]

rearranged lists

reverse, shuffle
sort, sort-by

Alan G. Isaac (American University) NetLogo Programming 95 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#listsgroup
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#listsgroup

The NetLogo Programming Language Lists

Immutability

NetLogo lists are immutable: you construct new lists based on old lists.

if you want an extant variable to refer to a new list, use set.

set mylist replace-item 0 mylist 99
; mylist’s first element is now 99
set mylist lput 100 mylist
; appends the value 100 to mylst
set mylist fput -1 mylist
; mylist now has a new first element

Alan G. Isaac (American University) NetLogo Programming 96 / 161

The NetLogo Programming Language Lists

Creating Lists from Agentsets with of

use of with an agentset:

[color] of turtles

[pcolor] of patches

[(list self pcolor)] of patches

[(list self color size)] of turtles

Note that lists can contain lists!

Alan G. Isaac (American University) NetLogo Programming 97 / 161

The NetLogo Programming Language Lists

Lists to Agentsets

patch-set lst
creats a patch set from any patches in lst (or its sublists)
http://ccl.northwestern.edu/netlogo/docs/dictionary.
html#patch-set
turtle-set lst
creats a turtle set from any turtles in lst (or its sublists)
http://ccl.northwestern.edu/netlogo/docs/dictionary.
html#turtle-set

Alan G. Isaac (American University) NetLogo Programming 98 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#patch-set
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#patch-set
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#turtle-set
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#turtle-set

The NetLogo Programming Language Lists

Introduction to Functional Programming

map reporter-task list Apply a reporter to a list and produce a new list.
The current item is represented by ?.
E.g., map [? * ?] [0 1 2] reports [0 1 4].

filter boolean-reporter-task list Report a list of criterion-satsifying
members of the input list. (See discussion below.)

reduce two-input-reporter-task list Combine the items of a list into a single
result by repeatedly applying a binary operation.
Suppose op is an infix binary operation then reduce op [a
b c] will report ((a op b) op c)
E.g., reduce [?1 + ?2] [1 2 3] reports 6 while
reduce [?1 - ?2] [1 2 3] reports -4.

sort-by reporter-task list Sort a list based on pairwise comparisons.
E.g., sort-by [?1 > ?2] [3 1 4 2] reports [4 3 2
1]

Alan G. Isaac (American University) NetLogo Programming 99 / 161

The NetLogo Programming Language Lists

Mapping

to-report string-to-digits [#s]
let _idxs n-values (length #s) [?]
report map [read-from-string item ? #s] _idxs

end

Alan G. Isaac (American University) NetLogo Programming 100 / 161

The NetLogo Programming Language Lists

Filtering

Sometimes we want a sublist of elements that meet a certain criterion. We can
use filter for this. E.g.,

filter [? < 3] [1 2 1 3]

reports [1 2 1].

Alan G. Isaac (American University) NetLogo Programming 101 / 161

The NetLogo Programming Language Lists

Filtering Agentsets

If you want to filter an agentset s based on an attribute w, you would have to
convert it to a list ([self] of myagentset) before your could apply
filter. E.g.,

filter [[w] of ? < 3] [self] of patches

However, the better way is usually to use with:

patches with [w < 3]

(Of course, with reports an agentset, not a list.) It follows that with can
remove an agent a from an agentset:

set myset myset with [self != a]

Alan G. Isaac (American University) NetLogo Programming 102 / 161

The NetLogo Programming Language Lists

Lists: Contrast with Agentsets

agentset

an unordered, mutable, homogeneous collection of agents
traverse with ask

ask agentset [list of commands]

list

an ordered, immutable, possibly heterogeneous collection of objects

traverse the list items sequentially with foreach
E.g., foreach [1.1 2.2 2.6] [print round ?]

Alan G. Isaac (American University) NetLogo Programming 103 / 161

The NetLogo Programming Language Lists

Advanced List Use

Some example of advance list use:

Alan G. Isaac (American University) NetLogo Programming 104 / 161

The NetLogo Programming Language Lists

nested foreach

to-report moore-offsets [radius]
let dxdy (list) ;; empty list
let offsets n-values
(2 * radius + 1) [? - radius]

foreach offsets [
let xoff ?
foreach offsets [

let yoff ?
set dxdy lput (list xoff yoff) dxdy
]

]
report dxdy

end

Alan G. Isaac (American University) NetLogo Programming 105 / 161

The NetLogo Programming Language Lists

Permutations via Nested foreach

NetLogo supports recursion, which we use here to produce all the
permutations of a list.

to-report permutations [#lst] ;Return all permutations of ‘lst‘
let n length #lst
if (n = 0) [report #lst]
if (n = 1) [report (list #lst)]
if (n = 2) [report (list #lst reverse #lst)]
let result []
let idxs n-values n [?]
;use each item as a first item, permuting remaining items
foreach idxs [
let xi item ? #lst
foreach (permutations remove-item ? #lst) [

set result lput (fput xi ?) result
]

]
report result

end
Alan G. Isaac (American University) NetLogo Programming 106 / 161

The NetLogo Programming Language reduce

Simple Reduction of a List

reduce reporter list repeatedly apply a binary operation to a list from left to
right, using the binary operation supplied by reporter.

Use ?1 and ?2 in your reporter to refer to the two objects being combined.
For example, we can sum the items in [1 2 3] as follows:

reduce [?1 + ?2] [1 2 3]
reduce + [1 2 3] ;; short form

Alan G. Isaac (American University) NetLogo Programming 107 / 161

The NetLogo Programming Language reduce

How reduce Works

Consider the following:

reduce [?1 + ?2] [1 2 4]

Remember, reduce works through the list from left to right. Here ?1 refers to
the first argument, and ?2 refers to the second argument.

Step 1: set ?1 to the first item (e.g., 1) and set ?2 to the second item
(e.g., 2)

Step 2: add ?1 and ?2; if there are any more list items go to Step 3,
otherwise report the result of the addition.

Step 3: set ?1 to the result of addition (e.g., 3), and then set ?2 to the
next item in the list (e.g., 4). Go to Step 2.

So the following would produce the same result:

to-report sum-list [lst]
let arg1 first lst
foreach butfirst lst [

let arg2 ?
set arg1 (arg1 + arg2)

]
report arg1

end

Alan G. Isaac (American University) NetLogo Programming 108 / 161

The NetLogo Programming Language reduce

Factorial via reduce

We can use reduce with n-values to produce the factorial of any positive
integer.

to-report factorial [#n]
report reduce * n-values #n [? + 1]

end

Alan G. Isaac (American University) NetLogo Programming 109 / 161

The NetLogo Programming Language reduce

Binary to Integer via reduce

Suppose we have a list of zeros and ones representing a binary number.

to-report binary-to-integer [bits]
report reduce [?1 * 2 + ?2] bits

end

Alan G. Isaac (American University) NetLogo Programming 110 / 161

The NetLogo Programming Language reduce

All and Any

NetLogo does not provide all and any for lists. But they are easily
implemented for list of booleans with reduce. For example:

to-report all-true [#lst]
report reduce and #lst

end

to-report any-true [#lst]
report reduce or #lst

end

Alan G. Isaac (American University) NetLogo Programming 111 / 161

The NetLogo Programming Language reduce

flatten via reduce

Recall we can use sentence to concatenate lists. We can therefore use
reduce with sentence to concatenate all the sublists in a list of lists.

to-report flatten [#lstlst]
report reduce sentence #lstlst

Example: flatten [[0] [1 1] [2 2 2]]

Alan G. Isaac (American University) NetLogo Programming 112 / 161

The NetLogo Programming Language reduce

Reversing a List with reduce

To reverse a list using reduce, we use a useful trick: we modify our input
argument by inserting an empty list at the front (with fput). This is the first
value seen by reduce, so we can use it to successively accumulate items.

reduce [fput ?2 ?1] (fput [] lst)

Note: since NetLogo has a reverse primitive, this exercise is simply to
illustrate the capabilities of reduce.

Alan G. Isaac (American University) NetLogo Programming 113 / 161

The NetLogo Programming Language reduce

Cumulative Sum using reduce

To form a list of cumulative sums, also called partial sums, we reuse the trick of
inserting a list as the first item in our input. Construct new lists using reduce by
first using fput to insert the initialized list.

to-report partial-sums [#lst]
set #lst (fput [0] #lst) ;;prepare for reduce
report butfirst reduce [lput (?2 + last ?1) ?1] #lst

end

Challenge: carefully explain how this code works.

Alan G. Isaac (American University) NetLogo Programming 114 / 161

The NetLogo Programming Language reduce

Computations for a Lorenz Curve

Use one of our partial-sums procedures (above).

to-report cumulative-shares [#wealths]
;; caclulate normalized sorted wealths
let _n length #wealths
let _ws sort #wealths
let _cumsum-ws partial-sums _ws
let _total-w last _cumsum-ws
report map [? / _total-w] _cumsum-ws

end

Alan G. Isaac (American University) NetLogo Programming 115 / 161

The NetLogo Programming Language reduce

Computing Gini Coefficient

Use the shares you computed for the Lorenz curve.

to-report shares2gini [#shares]
let _n length #shares
let _pop-shares n-values _n [(? + 1) / _n]
let _gaps (map [?1 - ?2] _pop-shares #shares)
report sum _gaps * 2 / _n

end

Alan G. Isaac (American University) NetLogo Programming 116 / 161

The NetLogo Programming Language reduce

Plotting Lorenz Curve ...

plot 0
let _shares cumulative-shares [wealth] of turtles
let _n length _shares
set-plot-pen-interval 1 / _n
foreach _shares [plot ?]

Alan G. Isaac (American University) NetLogo Programming 117 / 161

The NetLogo Programming Language Tasks

Tasks vs. Procedures

Like procedures, tasks store code for later execution.
Unlike procedures, tasks are values, and they can be passed around like any
other values.
We declare a task with the task primitive.
Analogously to procedures, we can have command tasks and reporter tasks.
We can ask which type of task we are dealing with with the
is-command-task? and is-reporter-task? primitives.
Analogously to procedures, tasks can accept arguments. Taks arguments are
represented as ? or ?1, ?2, etc.

Alan G. Isaac (American University) NetLogo Programming 118 / 161

The NetLogo Programming Language Tasks

Command Tasks: Simple Example

A command task is used to run code without returning a value.
We use the run primitive to run a command task. Consider the following.

globals [x x++]

to setup
set x 0
set x++ task [set x (x + 1)]

end

Now we can run x++ to add 1 to x.
NetLogo peculiarity: note that x++ is just an ordinary NetLogo name.

Alan G. Isaac (American University) NetLogo Programming 119 / 161

The NetLogo Programming Language Tasks

Command Tasks

A command task is used to run code without returning a value.
We use the run primitive to run a command task. Consider the following.

globals [stack push]

to setup
set stack []
set push task [set stack lput ? stack]

end

Now we can (run push 1) to push a 1 on our stack. Note the required
parentheses.

Alan G. Isaac (American University) NetLogo Programming 120 / 161

The NetLogo Programming Language Tasks

Surprising Need for Parentheses

IMPORTANT: If tasks take input arguments, they must be run with parentheses
(as of NetLogo 5.1).
In the previous example (run push 1) works but run push 1 fails. The
parenthesis determine what is considered to be an input to the task. (Extra
inputs are simply ignored.)

Alan G. Isaac (American University) NetLogo Programming 121 / 161

The NetLogo Programming Language Tasks

An Even More Surprising Need for Parentheses

let biggest task [ifelse-value (?1 >= ?2) [?1] [?2]]
show reduce [(runresult biggest ?1 ?2)] [1 2 3 4 3 2 1]
show reduce biggest [1 2 3 4 3 2 1] ;shorthand for the same thing

Alan G. Isaac (American University) NetLogo Programming 122 / 161

The NetLogo Programming Language Tasks

Reporter Tasks

A reporter task is used to run code and return a value.
We use the runresult primitive to run a reporter task. For example:

let square task [? * ?] print (runresult square 5)

Again, tasks with arguments must be run with parentheses (as of NetLogo
5.1). The following fails for lack of parentheses.

let square task [? * ?] print runresult square 5

Alan G. Isaac (American University) NetLogo Programming 123 / 161

The NetLogo Programming Language Tasks

Plotting Exercise: Simple Function Plot

Add a plot named functionPlot to your Interface.
Add the following command procedure to your Code.

to plotFunction [#fn #xl #xr #npts]
let %x n-values #npts [#xl + ? * (#xr - #xl) / (#npts - 1)]
foreach %x [plotxy ? (run-result #fn ?)]

end

Here #fn is a task that accepts one argument. The arguments #xl and #xr
are the left and right boundaries of the plot domain. The argument #npts is
the number of points to plot.
Exercise: On the interval [0,1], plot the logistic map with an amplitude
parameter of 3.5.
Background: http://en.wikipedia.org/wiki/Logistic_map

Alan G. Isaac (American University) NetLogo Programming 124 / 161

http://en.wikipedia.org/wiki/Logistic_map

The NetLogo Programming Language Tasks

Tasks Are Closures

Tasks reported by procedures close over variables local to the procedure.
Consider the following reporter procedure, which reports a task.

to-report remainder-task [#divisor]
report task [? mod #divisor]

end

Now we can do the following:

let mod3 remainder-task 3 show (runresult mod3 17)
let mod4 remainder-task 4 show (runresult mod4 17)

Alan G. Isaac (American University) NetLogo Programming 125 / 161

The NetLogo Programming Language Tasks

Tasks in the Models Library

State Machine Example

Termites 3D

Alan G. Isaac (American University) NetLogo Programming 126 / 161

The NetLogo Programming Language File-Based IO

Open a File

We use file-open to open a file for reading or appending.
Unlike many languages, NetLogo does not ask you to specify upon opening
whether you will read from or write to the file. That is determined by the next
file primitive you use (e.g., file-read or file-write).
Once you are done with an open file, you should close it with file-close.

file-open "temp.txt"
file-close ;;close the last opened file

Note: use forward slashes, not backslashes, in your path names.
Note: NetLogo does not offer access to explicit file handles.

Alan G. Isaac (American University) NetLogo Programming 127 / 161

The NetLogo Programming Language File-Based IO

Open a File for Writing

If you open an existing file and write to it, you will append to that file.
If you want to replace the content of an existing file, you will have start with a
file-delete.
In order to open a file for writing and close it afterwards, you need the following
commands:

file-delete string delete the file designated by string

file-open string open a file for reading or appending (but not both)

file-close: close an open file

Alan G. Isaac (American University) NetLogo Programming 128 / 161

The NetLogo Programming Language File-Based IO

Using carefully with file-delete

Deleting a file that does not exist is a runtime error!
If you want to replace the content of a file, say temp.txt, you should begin
by deleting the existing file. But suppose you do not know ahead of time
whether the file exists. Then use carefully.
http://ccl.northwestern.edu/netlogo/docs/dictionary.
html#carefully
For example, try the following at the command line:

carefully [file-delete "temp.txt"] []
file-open "temp.txt"
file-print "write this line to temp.txt"
file-close

Alan G. Isaac (American University) NetLogo Programming 129 / 161

http://ccl.northwestern.edu/netlogo/docs/dictionary.html#carefully
http://ccl.northwestern.edu/netlogo/docs/dictionary.html#carefully

The NetLogo Programming Language File-Based IO

Caution: you should ask before file-delete

As long as you are sure it is safe to delete any existing file by that name, you
can use carefully with file-delete.
You can never be sure it is ok to delete a file that someone else might have
created. So models that you share should not use this approach.
You can check whether the file exists with file-exists, which returns a
boolean.

if (file-exists? "temp.txt") [
ifelse (user-yes-or-no? "OK to delete temp.txt?") [

file-delete "temp.txt"
][
error "temp.txt already exists"

]
]

Alan G. Isaac (American University) NetLogo Programming 130 / 161

The NetLogo Programming Language File-Based IO

File Output Commands

NetLogo provides an unusual collection of commands for writing to files. Note
that file-print and file-show append a carriage return (CR).

file-type value write value
strings are written without quotes; backslashes escape control
characters

file-write value write a space and then write value,
strings are written quote delimited; backslashes are literal

file-print value write value, followed by CR

file-show value first write the agent description, then write value, followed
by CR

Comment: Windows-centric text editors may not display CR as an end-of-line.
For example, Notepad will not display then at all.

Alan G. Isaac (American University) NetLogo Programming 131 / 161

The NetLogo Programming Language File-Based IO

Example: Write Space-Separated Values (SSV)

Try this in the command center:

carefully [file-delete "temp.txt"] []
file-open "temp.txt"
file-print "minimum mean maximum"
file-type 10 file-write 15 file-write 20
file-print "" ;;terminate line with CR
file-close

Alan G. Isaac (American University) NetLogo Programming 132 / 161

The NetLogo Programming Language File-Based IO

Example: Write Comma-Separated Values (CSV)

Ordinarily we use the csv extension to write CSV files. However, we can do it
by hand. Here we illustrate how to write a header line. In the Code tab, create
the following command procedure:

to writeCSV [#fname #vals]
file-open #fname
file-type first #vals
foreach but-first #vals [

file-type "," file-type ?
]
file-print "" ;;terminate line with CR
file-close

end

At the command center, enter the following:

carefully [file-delete "temp.csv"] []
writeCSV "temp.csv" ["minimum" "mean" "maximum"]
writeCSV "temp.csv" [10 15 10]

Writing subsequent lines is identical.Alan G. Isaac (American University) NetLogo Programming 133 / 161

The NetLogo Programming Language File-Based IO

Multiple Open Files

You must always use file-open to specify what file you want to interact
with. E.g.,

file-open "log1.txt"
file-open "log2.txt"
file-write "this goes in log2.txt"
file-close
file-open "log1.txt" ;;required!
file-write "this goes in log1.txt"
file-close

Alan G. Isaac (American University) NetLogo Programming 134 / 161

The NetLogo Programming Language File-Based IO

File-Based Input

In order to read external information into a program, the following commands
are often useful.

file-read-line: read the next line and return it as a string (without
terminators)

file-read: read the next "constant" (e.g., number, list, or string) and return
it

file-at-end?: report true if last character of file has been read

Of course we will still need to open and close our files.

file-open string: open a file for reading or appending (but not both)

file-close: close an open file

Alan G. Isaac (American University) NetLogo Programming 135 / 161

The NetLogo Programming Language File-Based IO

Example: file-read-line

Try this in the command center:

file-open "temp.txt"
print file-read-line
file-close

Note use forward slashes in your paths.

Alan G. Isaac (American University) NetLogo Programming 136 / 161

The NetLogo Programming Language File-Based IO

Example: File-Based Input

Suppose the nldata01.txt looks like:

pxcor pycor n-turtles
0 0 5
1 0 3

You could handle this (in a procedure, in the Code tab) as follows:

file-open "nldata01.txt"
let trash file-read-line ;; discard header line
while [not file-at-end?] [

ask patch file-read file-read [sprout file-read]
]
file-close

Alan G. Isaac (American University) NetLogo Programming 137 / 161

The NetLogo Programming Language File-Based IO

Example: More File-Based Input

Assume a 20x10 world of patches.
Suppose patches have a foo attribute. Suppose you have created foo.txt
as:

1 2 3 4 ... 200

Suppose patches also have a bar attribute. Suppose you have created
bar.txt as:

200 199 198 197 ... 1

Give each patch one of these values for its foo and bar attributes as follows:

to setupPatches
let patch-list sort patches
file-open "foo.txt"
foreach patch-list [ask ? [set foo file-read]]
file-close
file-open "bar.txt"
foreach patch-list [ask ? [set bar file-read]]
file-close

end

Comment: patches are sorted in a fixed order: left to right, top to bottom.

Alan G. Isaac (American University) NetLogo Programming 138 / 161

The NetLogo Programming Language File-Based IO

Example: File-Based Input (Python)

fin = open(’nldata01.txt’, ’r’)
trash = next(fin)
data = dict()
for line in fin:

x, y, n = map(int, line.split())
data[(x,y)] = n

fin.close()

Alan G. Isaac (American University) NetLogo Programming 139 / 161

The NetLogo Programming Language File-Based IO

CSV Extension

NetLogo provides a CSV extension for reading and writing CSV data:
http://ccl.northwestern.edu/netlogo/docs/csv.html
CSV stands for comma-separated values. This is an internationally recognized
data-exchange format. See
https://tools.ietf.org/html/rfc4180
The CSV extension accommodates some common deviations from the CSV
standard. For example, it allows specification of a different delimiter than the
comma. However, the standard for scientific data exchange is a comma as the
field delimiter and a point as the decimal separator.

Alan G. Isaac (American University) NetLogo Programming 140 / 161

http://ccl.northwestern.edu/netlogo/docs/csv.html
https://tools.ietf.org/html/rfc4180

The NetLogo Programming Language File-Based IO

Example: File-Based Input (CSV)

extensions [csv]

to setup
file-close-all
ca
file-open "c:/temp/temp.csv"
;;if there is a header line, use it or discard it
let _trash file-read-line

end

to get-one-line
file-open "c:/temp/temp.csv"
if file-at-end? [stop]
let _line file-read-line ;; read the line into a string
let _data csv:from-row _line ;; convert the string to a list of numbers
;;now do whatever you want with the data

end

Alan G. Isaac (American University) NetLogo Programming 141 / 161

The NetLogo Programming Language File-Based IO

Example: File-Based Output (CSV)

extensions [csv]

to setup
ca
file-close-all
carefully [file-delete "temp.csv"] []
file-open "c:/temp/temp.csv"
file-print "x,y,z"
file-close

end

to write-one-line
let _mylist (list x y z)
file-open "c:/temp/temp.csv"
let _mystr csv:to-row _mylist
file-print _mystr
file-close

end

Alan G. Isaac (American University) NetLogo Programming 142 / 161

The NetLogo Programming Language File-Based IO

BehaviorSpace and File Output

If you want to make your own output files during BehaviorSpace runs, use the
behaviorspace-run-number primitive. Alternatively, produce filenames
based on parameter values.

["globalA" 1 2 3]
["gloablB" 4 5 6]
file-open (word "myfile-" globalA "-" globalB ".txt")

Of course you can combine these two approaches.
If you needs even more flexibility, consider Charles Staelin’s pathdir
extension. It might still be here: http:
//sophia.smith.edu/~cstaelin/NetLogo/pathdir.html

Alan G. Isaac (American University) NetLogo Programming 143 / 161

http://sophia.smith.edu/~cstaelin/NetLogo/pathdir.html
http://sophia.smith.edu/~cstaelin/NetLogo/pathdir.html

The NetLogo Programming Language Extensions

Bundled Extensions

See: Help > NetLogoUser Manual > Extensions
A standard NetLogo installation bundles a few extensions, which are located in
Extensions subfolder of the NetLogo installation folder. These include:

table is often needed; array and matrix can also be useful
http://ccl.northwestern.edu/netlogo/docs/
arraystables.html http:
//ccl.northwestern.edu/netlogo/docs/matrix.html

nw provids a collection of networkd-analysis primitives

profiler provides an experimental but useful profiler

sound provides MIDI sounds and sound file playback

gogo interacts with a GoGo board for simple robotics

bitmap and qtj (Qucktime) are useful for movie making and
interacting with images

gis provides basic GIS capabilities

Alan G. Isaac (American University) NetLogo Programming 144 / 161

http://ccl.northwestern.edu/netlogo/docs/arraystables.html
http://ccl.northwestern.edu/netlogo/docs/arraystables.html
http://ccl.northwestern.edu/netlogo/docs/matrix.html
http://ccl.northwestern.edu/netlogo/docs/matrix.html

The NetLogo Programming Language Extensions

Other Important Extensions

See
https://github.com/NetLogo/NetLogo/wiki/Extensions

shell https:
//github.com/NetLogo/Shell-Extension/

stats
https://github.com/cstaelin/
Stats-Extension/releases
http://sophia.smith.edu/~cstaelin/
NetLogo/StatsExtension-v1.2.1.pdf

R
http://r-ext.sourceforge.net/
[thiele.grimm-2010-envsoft]

numanal Numerical Analysis (roots and optima) http:
//sophia.smith.edu/~cstaelin/NetLogo.html
http://sophia.smith.edu/~cstaelin/NetLogo/
numanal.html

web https://github.com/NetLogo/Web-Extension/
wiki/Primitives
Example of retrieving stock market data in real time:
web:make-request

"http://download.finance.yahoo.com/d/quotes.csv"
"GET" [["s" "GOOG"] ["f" "l1"] ["e" ".csv"]]

Alan G. Isaac (American University) NetLogo Programming 145 / 161

https://github.com/NetLogo/NetLogo/wiki/Extensions
https://github.com/NetLogo/Shell-Extension/
https://github.com/NetLogo/Shell-Extension/
https://github.com/cstaelin/Stats-Extension/releases
https://github.com/cstaelin/Stats-Extension/releases
http://sophia.smith.edu/~cstaelin/NetLogo/StatsExtension-v1.2.1.pdf
http://sophia.smith.edu/~cstaelin/NetLogo/StatsExtension-v1.2.1.pdf
http://r-ext.sourceforge.net/
http://sophia.smith.edu/~cstaelin/NetLogo.html
http://sophia.smith.edu/~cstaelin/NetLogo.html
http://sophia.smith.edu/~cstaelin/NetLogo/numanal.html
http://sophia.smith.edu/~cstaelin/NetLogo/numanal.html
https://github.com/NetLogo/Web-Extension/wiki/Primitives
https://github.com/NetLogo/Web-Extension/wiki/Primitives

The NetLogo Programming Language Extensions

NetLogo-Mathematica Link

You can control NetLogo from Mathematica: http:
//ccl.northwestern.edu/netlogo/docs/mathematica.html
There is a tutorial: http://ccl.northwestern.edu/netlogo/5.
0/docs/NetLogo-Mathematica%20Tutorial.pdf

Alan G. Isaac (American University) NetLogo Programming 146 / 161

http://ccl.northwestern.edu/netlogo/docs/mathematica.html
http://ccl.northwestern.edu/netlogo/docs/mathematica.html
http://ccl.northwestern.edu/netlogo/5.0/docs/NetLogo-Mathematica%20Tutorial.pdf
http://ccl.northwestern.edu/netlogo/5.0/docs/NetLogo-Mathematica%20Tutorial.pdf

The NetLogo Programming Language Arrays

What is an Array?

A NetLogo array is a fixed-length collection of objects, such as a collection of
100 numbers. Let us make an array of length 100, full of zeros.

array:from-list n-values 100 [0]

Indexing is zero-based. That is, as with lists, the first item has index 0. The
second item has index 1. And so on.
Documentation: http://ccl.northwestern.edu/netlogo/5.0/
docs/arraystables.html

Alan G. Isaac (American University) NetLogo Programming 147 / 161

http://ccl.northwestern.edu/netlogo/5.0/docs/arraystables.html
http://ccl.northwestern.edu/netlogo/5.0/docs/arraystables.html

The NetLogo Programming Language Arrays

Arrays Are Mutable

School-Lockers Analogy:
You can think of an array as a bit like a row of school lockers. Each student has
an assigned locker, where s/he stores stuff. The stuff in a locker can change.
Similarly, we can change the corresponding item in the array. Let us change
the first value of myarray to 999.

array:set myarray 0 999

Alan G. Isaac (American University) NetLogo Programming 148 / 161

The NetLogo Programming Language Arrays

Increment a Single Item

Let us increment the first value of myarray by 1.

array:set myarray 0 (array:item myarray 0 + 1)

Let us decrement the second value of myarray by 1.

array:set myarray 1 (array:item myarray 1 - 1)

When array items represent the values of an attribute of agents, then a transfer
can be represented as a decrement of one item combined with an increment in
another.
This is a bit like taking something out of one student’s locker and putting it in
another student’s locker.

Alan G. Isaac (American University) NetLogo Programming 149 / 161

The NetLogo Programming Language Arrays

Arrays vs Lists

NetLogo uses the term "array" substantially differently than many languages.
In particular, a NetLogo array is a fixed length container of objects, which need
not be of a common type. (E.g., they need not all be numbers.) Array items
can be quickly accessed or replaced, using their indexes.

array:set myarr 0 (array:item myarr 0 + 1)

Since lists are immutable, the equivalent operation on lists is a bit more
awkward.

set mylst replace-item 0 mylst (item 0 mylst + 1)

Alan G. Isaac (American University) NetLogo Programming 150 / 161

The NetLogo Programming Language Arrays

Array Limitations

While arrays can be useful when one needs a fixed-length container with
changing contents, they are limited. For example, to copy an array, you need a
list intermediary:

let acopy array:from-list array:to-list myarr

(See http://ccl.northwestern.edu/netlogo/docs/
arraystables.html for details on array:to-list.)
Similarly, max and min work only on lists, so you will again have to use
array:to-list if you want to use these commands.

Alan G. Isaac (American University) NetLogo Programming 151 / 161

http://ccl.northwestern.edu/netlogo/docs/arraystables.html
http://ccl.northwestern.edu/netlogo/docs/arraystables.html

The NetLogo Programming Language Arrays

Array Limitations: Filtering

We can only apply filter to lists. So if you want to filter an array a, you
need to convert it first:

filter [? < 3] array:to-list a

Alan G. Isaac (American University) NetLogo Programming 152 / 161

The NetLogo Programming Language Tables

What is a Table?

A NetLogo array is a mapping from keys to values.
Documentation: http://ccl.northwestern.edu/netlogo/5.0/
docs/arraystables.html

Alan G. Isaac (American University) NetLogo Programming 153 / 161

http://ccl.northwestern.edu/netlogo/5.0/docs/arraystables.html
http://ccl.northwestern.edu/netlogo/5.0/docs/arraystables.html

The NetLogo Programming Language Tables

Tables Are Mutable

to-report counts [#lst]
let _t table:make
foreach #lst [
let _k ?
ifelse table:has-key? _t _k [

table:put _t _k (1 + table:get _t _k)
][

table:put _t _k 1
]

]
report _t

end

Alan G. Isaac (American University) NetLogo Programming 154 / 161

The NetLogo Programming Language Odds and Ends

Colors Are Numbers

When we show the color of an agent, the result is a number. NetLogo
represents colors by numbers in [0 .. 140).
http://ccl.northwestern.edu/netlogo/5.0/docs/
programming.html#colors
The command random-float 140 picks a random number in this range.
As a matter of convenience, NetLogo also defines named aliases for some
colors. (E.g., white = 9.9.)
So the following are equivalent:

ask mypatch [set pcolor white]
ask mypatch [set pcolor 9.9]

(You can see this equivalent by entering show white at the command line.)

Alan G. Isaac (American University) NetLogo Programming 155 / 161

http://ccl.northwestern.edu/netlogo/5.0/docs/programming.html#colors
http://ccl.northwestern.edu/netlogo/5.0/docs/programming.html#colors

The NetLogo Programming Language Odds and Ends

scale-color

For useful examples (including shading and tinting), see http://ccl.
northwestern.edu/papers/ABMVisualizationGuidelines/
palette/doc/NetLogo%20Color%20Howto%201.htm

Alan G. Isaac (American University) NetLogo Programming 156 / 161

http://ccl.northwestern.edu/papers/ABMVisualizationGuidelines/palette/doc/NetLogo%20Color%20Howto%201.htm
http://ccl.northwestern.edu/papers/ABMVisualizationGuidelines/palette/doc/NetLogo%20Color%20Howto%201.htm
http://ccl.northwestern.edu/papers/ABMVisualizationGuidelines/palette/doc/NetLogo%20Color%20Howto%201.htm

The NetLogo Programming Language Advanced Topics

NetLogo File Format

NetLogo files use a plain text file format.
https:
//github.com/NetLogo/NetLogo/wiki/Model-file-format
This means that all the widgets in the Interface tab can be edited with a
text editor. The widget-format documentation is online.
https:
//github.com/NetLogo/NetLogo/wiki/Widget-Format

Alan G. Isaac (American University) NetLogo Programming 157 / 161

https://en.wikipedia.org/wiki/Plain_text
https://en.wikipedia.org/wiki/File_format
https://github.com/NetLogo/NetLogo/wiki/Model-file-format
https://github.com/NetLogo/NetLogo/wiki/Model-file-format
https://github.com/NetLogo/NetLogo/wiki/Widget-Format
https://github.com/NetLogo/NetLogo/wiki/Widget-Format

The NetLogo Programming Language Advanced Topics

NetLogo with GIS

We do not cover the GIS capabilities of NetLogo. Simple example are in the
NetLogo Models Library.
Here is an introduction:
https://simulatingcomplexity.wordpress.com/2014/08/
20/turtles-in-space-integrating-gis-and-netlogo/
Also, see this interesting Artificial-Anasazi tutorial:

http://modelingcommons.org/browse/one_model/
2354#model_tabs_browse_info

http://scientificgems.wordpress.com/2014/06/07/
revisiting-artificial-anasazi-a-tutorial-part-1/

http://scientificgems.wordpress.com/2014/06/10/
revisiting-artificial-anasazi-a-tutorial-part-2/

Alan G. Isaac (American University) NetLogo Programming 158 / 161

https://simulatingcomplexity.wordpress.com/2014/08/20/turtles-in-space-integrating-gis-and-netlogo/
https://simulatingcomplexity.wordpress.com/2014/08/20/turtles-in-space-integrating-gis-and-netlogo/
http://modelingcommons.org/browse/one_model/2354#model_tabs_browse_info
http://modelingcommons.org/browse/one_model/2354#model_tabs_browse_info
http://scientificgems.wordpress.com/2014/06/07/revisiting-artificial-anasazi-a-tutorial-part-1/
http://scientificgems.wordpress.com/2014/06/07/revisiting-artificial-anasazi-a-tutorial-part-1/
http://scientificgems.wordpress.com/2014/06/10/revisiting-artificial-anasazi-a-tutorial-part-2/
http://scientificgems.wordpress.com/2014/06/10/revisiting-artificial-anasazi-a-tutorial-part-2/

The NetLogo Programming Language Advanced Topics

NetLogo with Java

We do not cover using Java with NetLogo, but see these useful materials:

http://scientificgems.wordpress.com/2013/12/11/
integrating-netlogo-and-java-part-1/

http://scientificgems.wordpress.com/2013/12/12/
integrating-netlogo-and-java-2/

http://scientificgems.wordpress.com/2013/12/13/
integrating-netlogo-and-java-3/

Alan G. Isaac (American University) NetLogo Programming 159 / 161

http://scientificgems.wordpress.com/2013/12/11/integrating-netlogo-and-java-part-1/
http://scientificgems.wordpress.com/2013/12/11/integrating-netlogo-and-java-part-1/
http://scientificgems.wordpress.com/2013/12/12/integrating-netlogo-and-java-2/
http://scientificgems.wordpress.com/2013/12/12/integrating-netlogo-and-java-2/
http://scientificgems.wordpress.com/2013/12/13/integrating-netlogo-and-java-3/
http://scientificgems.wordpress.com/2013/12/13/integrating-netlogo-and-java-3/

The NetLogo Programming Language Advanced Topics

References

Axtell, R., Axelrod, R., Epstien, J. M., and Cohen, M. D. (1996). Aligning
simulation models: A case study and results. Computational and Mathematical
Organization Theory, 1:123–141.
Resnick, M. (1997). Turtles, Termites, and Traffic Jams: Explorations in
Massively Parallel Microworlds. MIT Press.

[thiele.grimm-2010-envsoft] Thiele, Jan C, and Volker Grimm. 2010. NetLogo
meets R: Linking agent-based models with a toolbox for their analysis.

Environmental Modeling and Software , 972--974.

Alan G. Isaac (American University) NetLogo Programming 160 / 161

The NetLogo Programming Language Advanced Topics

Legalities

Copyright © 2016 Alan G. Isaac. Some rights reserved. This document is licensed
under the Creative Commons Attribution 4.0 International Public License.

Alan G. Isaac (American University) NetLogo Programming 161 / 161

http://creativecommons.org/licenses/by/4.0/

	Overview
	Preliminaries

	NetLogo Models: Basic Structure
	Building Models: First Steps
	Code Tab
	Program Structure
	Plotting: First Steps
	BehaviorSpace

	The NetLogo Programming Language
	Language Basics
	Lists
	reduce
	Tasks
	File-Based IO
	Extensions
	Arrays
	Tables
	Odds and Ends
	Advanced Topics

