
Lecture 26

Multivariate Optimization

This lecture investigates the problem of locating the extrema of a multivariate function
𝑓 : 𝑋 → R where 𝑓 is continuously differentiable on 𝑋 ⊆ R𝑛 . There is no change in
the definition of extremum from the univariate case, and the conditions for optimality
remain similar in important ways. For example, a first-order necessary condition for an
internal extremum is again that the function be locally flat: neither rising nor falling. Now
however there a multiple choice variables, and at a stationary point the slope must be zero
in every direction.

26.1 Optimality Conditions

Once again the first-order necessary condition identifies stationary points that are potential
extrema. And once again, in order to characterize the stationary points, information about
the function’s curvature is additionally required. This parallels the univariate case. For
example, a second order sufficient condition for a stationary point to be a local maximum
is once again that the function be locally concave. This lecture assumes that objective
functions are twice continuously differentiable and characterizes the local curvature of a
function in terms of its second-order partial derivatives.

26.1.1 First-Order Condition

Naturally, if x̂ is a maximum of 𝑓 , changing x cannot increase the value of the function.
This implies that all the partial derivatives must be zero at x̂: otherwise we could increase
the value of 𝑓 by slightly changingx. Recall that the vector of first-order partial derivatives
is called the gradient of 𝑓 , denoted by 𝐷 𝑓 or even more simply by 𝑓 ′.1 So a first-order
necessary condition for an extremum is that the gradient be zero.

Theorem 26.1 (Necessary Condition for Multivariate Optimization) Consider the be-
havior of a differentiable function 𝑓 : 𝑋 → R on an open set 𝑉 ⊆ 𝑋 ⊆ R𝑁 . If x̂ is a local
extremum of 𝑓 , then 𝑓 ′[x̂] = 0.

1Other common notations include 𝑓x⊤ , 𝜕 𝑓 /𝜕x⊤, ∇ 𝑓 , or ∇x 𝑓 .
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Proof : For each 𝑥𝑖 , consider the univariate mapping 𝑥𝑖 ↦→ 𝑓 [�̂�1 , . . . , 𝑥𝑖 , . . . , �̂�𝑁 ] and apply the
familiar univariate reasoning. This implies 𝜕 𝑓 [x̂]/𝜕𝑥𝑖 = 0 for every 𝑥𝑖 .

Theorem 26.1 gives us a starting point for finding extrema: impose 𝜕 𝑓 [x]/𝜕𝑥𝑖 = 0 for
all 𝑖, and find values of the 𝑥𝑖 that simultaneously satisfy the entire resulting system of
equations. Any pointx satisfying this first-order necessary condition is a stationary point
of 𝑓 .

To explore this necessary condition for an interior extremum, choose an arbitrary
vector h ∈ R𝑁 , and at any x, define the univariate function 𝑔 by

𝑔 = 𝛼 ↦→ 𝑓 [x + 𝛼h] − 𝑓 [x] (26.1)

Since 𝑓 is twice differentiable, the function 𝑔 will be twice differentiable. Note that

𝑔′ = 𝛼 ↦→ 𝑓 ′[x + 𝛼h] · h (26.2)

Example 26.1 The binary real function 𝑓 = ⟨𝑥, 𝑦⟩ ↦→ 1− 𝑥2− 𝑦2 has the gradient function
𝑓 ′ = ⟨𝑥, 𝑦⟩ ↦→ ⟨−2𝑥,−2𝑦⟩. Let h =

〈
ℎ𝑥 , ℎ𝑦

〉
, and for any given x define a unary real

function 𝑔 = 𝛼 ↦→ 𝑓 [x + 𝛼h] − 𝑓 [x]. Then

𝑔[𝛼] = (
1 − (𝑥 + 𝛼ℎ𝑥)2 − (𝑦 + 𝛼ℎ𝑦)2

) − (1 − 𝑥2 − 𝑦2)
= −(𝛼2ℎ2

𝑥 + 𝛼2ℎ2
𝑦 + 2𝛼𝑥ℎ𝑥 + 2𝛼𝑦ℎ𝑦)

Find the derivative of 𝑔:

𝑔′[𝛼] = −(2𝛼ℎ2
𝑥 + 2𝛼ℎ2

𝑦 + 2𝑥ℎ𝑥 + 2𝑦ℎ𝑦)
=

〈−2(𝑥 + 𝛼ℎ𝑥),−2(𝑦 + 𝛼ℎ𝑦)
〉 · 〈ℎ𝑥 , ℎ𝑦〉

= 𝑓 ′[x + 𝛼h] · 〈ℎ𝑥 , ℎ𝑦〉

Now suppose x̂ maximizes the twice-differentiable function 𝑓 : R𝑁 → R. Define 𝑔 in
terms of this value of x.

𝑔 = 𝛼 ↦→ 𝑓 [x̂ + 𝛼h] − 𝑓 [x̂] (26.3)

The function 𝑔 has a local maximum at 𝛼 = 0. So 𝑔 must be stationary at 0.

𝑔′[0] = ∇𝑓 [x̂] · h = 0 (26.4)

Since h is arbitrary, each of the first-order partial derivatives of 𝑓 must be zero at x̂. The
same approach works to show the gradient must be zero for an interior minimum.

Consider the differential
𝑑𝑓x = 𝑓 ′[x] · dx (26.5)

Since the partial derivatives are all zero at an extremum, the differential of 𝑓 is also zero
at x̂.
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26.1. Optimality Conditions

26.1.2 Second-Order Conditions
Continue to explore the possibility that the continuously twice differentiable function
𝑓 : X → R to has a maximum on an open set V ⊆ X ⊆ R𝑁 . Suppose x̂ ∈ V satisfies
the first-order necessary condition. Is it a maximizer, or a minimizer, or neither? Just as
in the univariate case, pinning this down requires an exploration of the curvature of the
function at �̂�. If the function is locally concave at �̂�, it is a local maximum. If it is locally
convex at �̂�, it is a local minimum.

Hessian Matrix

To explore the curvature, let 𝑓 ′′ be the matrix of second-order partial derivatives. In terms
of the representative ⟨𝑖 , 𝑗⟩-th matrix element,

𝑓 ′′ = x ↦→ [
𝑓𝑖 , 𝑗[x]

]
(26.6)

where 𝑓𝑖 , 𝑗 represent the second-order partial derivative with respect to the 𝑖-th and 𝑗-th
arguments.

𝑓𝑖 , 𝑗[x] = 𝜕2 𝑓 [x]
𝜕𝑥𝑖 𝜕𝑥 𝑗

(26.7)

This matrix of second-order partials derivatives is the Hessian matrix. Recall that if 𝑓
is continuously twice-differentiable then 𝑓𝑖 , 𝑗 = 𝑓𝑗 ,𝑖 , so the Hessian is a symmetric matrix.
There are many different notations notations for the Hessian, including the closely related
notation

𝑓 ′′ = x ↦→ 𝜕2 𝑓 [x̂]
𝜕x𝜕x⊤

(26.8)

which treats the input argument as a column vector. The Hessian of a function 𝑓 may also
be denoted by H𝑓 or D2 𝑓 .

Second-Order Condition

At a local maximum the Hessian must be nonpositive definite (negative semidefinite). To
explore this, once again consider the univariate function defined in (26.1). Our work on
the univariate case tells us that

𝑔′′[0] = h⊤ 𝑓 ′′[x̂]h ≤ 0 (26.9)

Since h is arbitrary, the Hessian must be nonpositive definite (negative semidefinite). This
is a second-order necessary condition for a maximum. The same argument shows that at
a minimum the Hessian must be nonnegative definite (positive semidefinite).

The continuing parallels with the univariate case raises a natural question: does a
negative definite Hessian at a stationary point imply local concavity of the objective
function, and is it a sufficient condition for stationary point to be a strict local maximizer?
The answer to both questions is yes, but we will postpone the proof.
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Theorem 26.2 Let x̂ be a stationary point of the continuously twice-differentiable func-
tion 𝑓 : 𝑋 ⊆ R𝑁 → R. If 𝑓 ′′[�̂�] is negative definite, then x̂ is a strict local maximizer of 𝑓 .
(Similarly, if 𝑓 ′′[x̂] is positive definite, then x̂ is a strict local minimizer of 𝑓 .)
Proof : See Simon and Blume (1994, ch.30).

Definition 26.1 Let x be a stationary point of the continuously twice-differentiable func-
tion 𝑓 : 𝑋 ⊆ R𝑁 → R. If H𝑓 [x] is indefinite, then x is called a saddle point of 𝑓 .

Theorem 26.3 A saddle point is not a minimizer or a maximizer.
Proof : See Simon and Blume (1994, ch.30).

Figure 26.1: Indefinite Quadratic Form
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26.2. Application to Curve Fitting

Example 26.2 Consider the quadratic form 𝑓 [x] = 𝑥2
1 − 𝑥2

2. Set 𝑓 ′[x] = 0.

⟨2𝑥1,−2𝑥2⟩ = ⟨0, 0⟩

Solving this equation produces is a stationary point at 0. Next, compute the Hessian at 0
to find

𝑓 ′′[0] =
[
2 0
0 −2

]

which is indefinite. The stationary point is therefore a saddle point. Specificially, changes
in 𝑥1 will increase the value of the function, while changes in 𝑥2 will decrease the value of
the function.

Example 26.3 Assume the production function 𝑓 : R𝑁≥0 → R≥0 is strictly concave in the
inputs x. Given the prices of output and inputs, a profit maximizing firm wants to

max
x

𝑝 𝑓 [x] −w⊤x (26.10)

The first-order necessary condition for a maximum is that there be a stationary point,
which must satisfy the matrix equation

𝑝 𝑓 ′[x] −w = 0 (26.11)

This says that each input is hired until the value of its marginal product equals its factor
price. The second-order necessary condition for a maximum is that 𝑓 ′′ be nonpositive
definite at the stationary point. Note that the Hessian of the objective function is the same
as the Hessian of the production function. Since 𝑓 is globally strictly concave, it is negative
definite. This satisfies the second-order necessary condition, and indeed fulfills sufficient
conditions for a strict global maximum.

26.2 Application to Curve Fitting
Curve fitting is a core practice in applied social science. A simple approach to curve fitting
provides a nice application of the optimization discuss of this lecture. We begin with
some data: 𝑁 observations on a dependent variable 𝑦 and an explanatory independent
variable 𝑥. What is the relation between them? Pindyck and Rubinfeld (1997) consider
the following approaches to fitting straight lines to the points:

• line from lowest 𝑥 value to highest 𝑥 value

• best visual fit

• sum of deviations equals zero (but big positive and negative deviations cancel, plus
the criteria does not yield a unique line)
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• minimize the sum of the absolute deviations (but is is computationally harder, and
perhaps underweights large deviations)

• minimize the sum of the squared deviations (computationally simple, and penalizes
large errors heavily)

The last of these is the method of least squares, which is the focus of this section.

26.2.1 Least Squares

The optimization problem involves choosing an intercept 𝑎 and a slope 𝑏 for the relation-
ship 𝑦 = 𝑎 + 𝑏𝑥 so that fitted values for the dependent variable lie as close as possible to
the actual values. The measure of closeness is the least squares criterion, so the objective
function is 𝑓 = ⟨𝑎, 𝑏⟩ ↦→ ∑(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)2. We wish to choose 𝑎 and 𝑏 to minimize the
objective function.

min
𝑎,𝑏

𝑁∑
𝑖=1
(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)2 (26.12)

Notice that the data are already given, and optimization involves choosing only two values
(the slope and intercept).

The first-order partial derivatives 𝑓 ′[𝑎, 𝑏] are

𝜕

𝜕𝑎

∑
(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)2 = −2

∑
(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)

𝜕

𝜕𝑏

∑
(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)2 = −2

∑
𝑥𝑖(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)

(26.13)

The first-order necessary condition 𝑓 ′[𝑎, 𝑏] = 0 is therefore a two-equation system in the
variables 𝑎 and 𝑏. Write these as

𝑁∑
𝑖=1
(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖) = 0

𝑁∑
𝑖=1

𝑥𝑖(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖) = 0

(26.14)

These first-order necessary conditions, known as the normal equations, are commonly
rewritten as

𝑎𝑁 + 𝑏
∑

𝑥𝑖 =
∑

𝑦𝑖

𝑎
∑

𝑥𝑖 + 𝑏
∑

𝑥2
𝑖 =

∑
𝑥𝑖𝑦𝑖

(26.15)
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or better yet as

𝑎 + 𝑏�̄� = �̄�

𝑎�̄� + 𝑏 1
𝑁

∑
𝑥2
𝑖 =

1
𝑁

∑
𝑥𝑖𝑦𝑖

(26.16)

The normal equations are two linear equations in the two unknowns 𝑎 and 𝑏. Naturally,
they have a simple matrix representation.[

1 �̄�
�̄� 1

𝑁
∑
𝑥2
𝑖

] [
𝑎
𝑏

]
=

[
�̄�

1
𝑁

∑
𝑥𝑖𝑦𝑖

]
(26.17)

Using the inverse matrix, solve this to get[
𝑎
𝑏

]
=

1
1
𝑁

∑
𝑥2
𝑖 − �̄�2

[ 1
𝑁

∑
𝑥2
𝑖 −�̄�−�̄� 1

] [
�̄�

1
𝑁

∑
𝑥𝑖𝑦𝑖

]

=
1

1
𝑁

∑
𝑥2
𝑖 − �̄�2

[
�̄� 1
𝑁

∑
𝑥2
𝑖 − �̄� 1

𝑁
∑
𝑥𝑖𝑦𝑖

−�̄� �̄� + 1
𝑁

∑
𝑥𝑖𝑦𝑖

] (26.18)

After some algebraic manipulation, fine 𝑏 = cov[𝑥, 𝑦]/var[𝑥].2
What about the second order conditions? Looking at (26.16) it is evident that the

Hessian is
𝑁

[
1 �̄�
�̄� 1

𝑁
∑
𝑥2
𝑖

]
(26.19)

which is easily shown to be positive definite, ensuring a unique minimum.

Matrix Algebra

Return to the normal equations (26.15). This time, create a vector Y of 𝑦𝑖 observations
and a matrix X of 𝑥𝑖 observations plus a constant. In addition, create a vector β of the
parameters we are trying to estimate.

Y =


𝑦1
...
𝑦𝑛


X =


1 𝑥1
...

1 𝑥𝑛


β =

[
𝑎
𝑏

]
(26.20)

2

𝑏 =
1
𝑁

∑
𝑥𝑖𝑦𝑖 − �̄� �̄�

1
𝑁

∑
𝑥2
𝑖 − �̄�2

=

∑
𝑥𝑖𝑦𝑖 − 𝑁�̄��̄�∑
𝑥2
𝑖 − 𝑁�̄�2

=

∑(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)∑(𝑥𝑖 − �̄�)2
=

∑(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)∑(𝑥𝑖 − �̄�)2
1

𝑁−1
1

𝑁−1
=

cov[𝑥, 𝑦]
var[𝑥]
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The first element of X all ones. Using this notation, write the normal equations as

X
⊤(Y −Xβ) = 0 (26.21)

which can be rearranged as
(X⊤

X)β = X
⊤
Y (26.22)

and our solution is
β = (X⊤

X)−1X
⊤
Y (26.23)

26.2.2 Some Properties of the Least Squares Estimator
Consider the implied residuals:

𝑒 = Y −X �̂� = Y −X(X⊤X)−1X⊤Y = [𝐼 −X(X⊤X)−1X⊤]Y (26.24)

So
X⊤𝑒 = X⊤Y −X⊤X(X⊤X)−1X⊤Y = X⊤Y −X⊤Y = 0 (26.25)

So when the regression includes a constant term, the residuals must sum to zero.
Suppose the true model is

Y = X𝛽 + 𝑒 (26.26)

Consider the expected value of �̂�.

�̂� = (X⊤X)−1X⊤Y
= (X⊤X)−1X⊤(X𝛽 + 𝑒)
= (X⊤X)−1X⊤X𝛽 + (X⊤X)−1X⊤𝑒
= 𝛽 + (X⊤X)−1X⊤𝑒

(26.27)

So if X is uncorrelated with 𝑒, we have an unbiased estimate of the true coefficient
parameter.3

26.2.3 Omitted Variables
Suppose we obtain the regression estimates

𝑌 = 𝑏0 + 𝑏1𝑋1 +𝑈 (26.28)

3We can write the residual vector as

𝑒 = Y −X(X⊤X)−1X⊤Y

= X𝛽 + 𝑒 −X(X⊤X)−1X⊤(X𝛽 + 𝑒)
= X𝛽 −X(X⊤X)−1X⊤X𝛽 + 𝑒 +X(X⊤X)−1X⊤𝑒

= [𝐼 −X(X⊤X)−1X⊤]𝑒
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but 𝑋2 should have been in the regression. That is we should have gotten the estimates

𝑌 = 𝑏′0 + 𝑏′1𝑋1 + 𝑏′2𝑋2 +𝑈 ′ (26.29)

How are the two estimates related?
We will explore this by considering the supplementary regression of 𝑋2 on 𝑋1:

𝑋2 = 𝑐0 + 𝑐1𝑋1 +𝑉 (26.30)

In every case the regression holds exactly on average. (This follows from the OLS
regression, which yields a zero average error.) Therefore the deviations of 𝑌 from its
mean, 𝑦, can be written

𝑦 = 𝑏1𝑥1 +𝑈 (26.31)

or
𝑦 = 𝑏′1𝑥1 + 𝑏′2𝑥2 +𝑈 ′ (26.32)

Note that the errors are unchanged, since they have a zero mean value.
Similarly, the deviation of 𝑋2 from its mean can be written

𝑥2 = 𝑐1𝑥1 +𝑉 (26.33)

Substitute this into (26.32) to get

𝑦 = 𝑏′1𝑥1 + 𝑏′2(𝑐1𝑥1 +𝑉) +𝑈 ′ (26.34)

Then subtract (26.34) from (26.31) to get

0 = (𝑏1 − 𝑏′1 − 𝑏′2𝑐1)𝑥1 +𝑈 −𝑈 ′ − 𝑏′2𝑉 (26.35)

The final step is to sum (26.35) over all the observations, recalling the errors𝑈 ,𝑈 ′, and
𝑉 are each zero on average.

0 = (𝑏1 − 𝑏′1 − 𝑏′2𝑐1)�̄�1 (26.36)

or
𝑏1 = 𝑏′1 + 𝑏′2𝑐1 (26.37)

So omission of 𝑋2 from the regression biases the coefficent estimate to an extent that
depends on the correlation between the omitted and included variables.

Note: Oksanen (1998) notes that these results hold for any regressions yielding zero
average errors.

Note: the derivation works even when 𝑏′1 and 𝑏′2 are vectors.

26.2.4 Instrumental Variables

Optional reading: Davidson and McKinnon 7.4, Pindyck and Rubinfeld (1997, ch.7)
But what if 𝑋 is correlated with the error term? Well perhaps we could generate a

proxy for 𝑋 that is not. For example, suppose we have a collection of variables 𝑍 that are
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not correlated with the error term but that we think can proxy 𝑋.

𝑋 = 𝑍𝛾 + 𝑣 (26.38)

Then we can produce our 𝑋 proxy as

�̂� = 𝑍(𝑍′𝑍)−1𝑍′𝑋 = 𝑃𝑍𝑋 (26.39)

Now reformulate our original problem as

𝑌 = 𝑋𝛽 + 𝑢 = 𝑃𝑍𝑋𝛽 + 𝑢 + �̂�𝛽 (26.40)

and produce the standard least squares estimate of 𝛽:

�̂� = (𝑋′𝑃′𝑍𝑃𝑍𝑋)−1𝑋′𝑃′𝑍𝑌 (26.41)

Noting that 𝑃𝑍 is symmetric idempotent, we have

�̂� = (𝑋′𝑃𝑍𝑋)−1𝑋′𝑃𝑍𝑌 (26.42)

This is the instrumental variables estimator, where the instruments are 𝑍.
This estimator is also known as the 2SLS estimator, because it can be easily produced

as two linear regressions: first regress 𝑋 on the instruments, then regress 𝑌 on the fitted
values of 𝑋.

26.3 Constrained Optimization
Constrained optimization adds new technical difficulties. Binding constraints generally
invalidate the first-order and second-order necessary conditions that we developed in
the unconstrained case. This section focuses on equality constraints: in addition to an
objective function 𝑓 [x], there is a constraint that 𝑔[x] = 0. Both functions are assumed to
be continuously differentiable.

26.3.1 First-Order Necessary Conditions
The constrained maximization problem considers only the values that 𝑓 [x] takes on the
constraint set {x | 𝑔[x] = 0 }. If 𝑓 [x] achieves an extremum (on this set) at the point x̂,
then the gradients of the functions are collinear at x̂. That is, for some number 𝜆,

𝑓 ′[x̂] = 𝜆 𝑔′[x̂] (26.43)

Consider a proof for the special case of a binary objective function 𝑓 and a single
equality constraint in the two choice variables.4 The objective is to pick 𝑥 and 𝑦 so as to
maximize 𝑓 [𝑥, 𝑦], subject to the constraint that 𝑔[𝑥, 𝑦] = 0.

4The proof strategy draws on Edwards (1973, p.93).
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Begin by focusing on the constraint. Assume satisfaction of the requirements of im-
plicit function theorem, such that the constraint function implies the implicit function 𝛾
satisfying 𝑔

[
𝑥, 𝛾[𝑥]] ≡ 0. That is, for each 𝑥, 𝛾[𝑥] is the value of 𝑦 that ensure the con-

straint is satisfied. Therefore chaning 𝑥 has no effect on the value of 𝑔
[
𝑥, 𝛾[𝑥]] . Making

use of the chain rule yields

0 = 𝑔′
[
𝑥, 𝑦[𝑥]] · [ 1

𝑦′[𝑥]
]

(26.44)

The vector ⟨1, 𝑦′[𝑥]⟩ is the direction of movement that will not lead to a constraint violation.

Example 26.4 Consider a budget constraint for a two-good consumer choice prob-
lem: 𝑝𝑥𝑥 + 𝑝𝑦𝑦 = 𝑤. Define 𝑔 = ⟨𝑥, 𝑦⟩ ↦→ 𝑝𝑥𝑥 + 𝑝𝑦𝑦 − 𝑤, which has the particu-
larly simple gradient 𝑔′ = ⟨𝑥, 𝑦⟩ ↦→ 〈

𝑝𝑥 , 𝑝𝑦
〉
. Solve 𝑔[𝑥, 𝑦] for the implicit function

𝛾 = 𝑥 ↦→ (𝑤−𝑝𝑥𝑥)/𝑝𝑦 . Then 𝑔[𝑥, 𝛾[𝑥]] = 𝑝𝑥𝑥+𝑝𝑦((𝑤−𝑝𝑥𝑥)/𝑝𝑦)−𝑤 ≡ 0. Correspondingly,
(d/d𝑥)𝑔[𝑥, 𝛾[𝑥]] = 𝑔1 ·1+ 𝑔2 · (𝛾′[𝑥]) = ⟨𝑔1, 𝑔2⟩ ·

〈
1,−𝑝𝑥/𝑝𝑦

〉
=

〈
𝑝𝑥 , 𝑝𝑦

〉 · 〈1,−𝑝𝑥/𝑝𝑦
〉
= 0.

Next, suppose the binary objective function 𝑓 attains a constrained maximum at ⟨�̂� , �̂�⟩.
Consider the unary function ℎ = 𝑥 ↦→ 𝑓

[
𝑥, 𝛾[𝑥]] , which provides the constrained values

of 𝑓 as 𝑥 varies (and therefore as 𝛾[𝑥] varies). Since the unary function attains a maximum,
ℎ′[�̂�] = 0. That is,

𝑓 ′[�̂� , �̂�] ·
[

1
𝑦′

]
= 0 (26.45)

Example 26.5 Consider a two-good utility function, 𝑢 : R2
≥0 → R. After imposing the

budget constraint as discussed above, produce the unary function 𝑥 ↦→ 𝑢[𝑥, 𝛾[𝑥]]. At a
constrained maximum, the derivative of this unary function is 0. Set (d/d𝑥)𝑢[𝑥, 𝛾[𝑥]] = 0
to get (at ⟨�̂� , 𝛾[�̂�]⟩)

0 = 𝑢1 · 1 + 𝑢2 · 𝛾′ = ⟨𝑢1, 𝑢2⟩ · ⟨1, 𝛾′⟩ = 𝑢′[𝑥, 𝛾[𝑥]] · ⟨1, 𝛾′⟩

It follows that that the gradients 𝑓 ′ and 𝑔′ are orthogonal to ⟨1, 𝑦′[�̂�]⟩ at the point
⟨�̂� , �̂�⟩. Therefore they are collinear. That is

𝑓 ′[�̂� , �̂�] = 𝜆 𝑔′[�̂� , �̂�] (26.46)

for some number 𝜆. These first-order necessary conditions provide two equations in
three unknowns: 𝑥, 𝑦, and 𝜆. A third equation is provided by the constraint: 𝑔[𝑥, 𝑦] =
0. Together, these three equations provide the first-order necessary conditions for the
constrained optimization.
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Example 26.6 Let 𝑓 = ⟨𝑥, 𝑦⟩ ↦→ 𝑥𝑦 and let 𝑔 = ⟨𝑥, 𝑦⟩ ↦→ 𝑥 + 2𝑦 − 8, where the constraint
is 𝑔[𝑥, 𝑦] == 0. The 𝑓 ′ = ⟨𝑥, 𝑦⟩ ↦→ ⟨𝑦, 𝑥⟩ and 𝑔′ = ⟨𝑥, 𝑦⟩ ↦→ ⟨1, 2⟩. Imposing collinearity
of the gradient and rewriting the constraint produces three equations in three unknowns:

𝑦 = 𝜆 𝑥 = 2𝜆 𝑥 + 2𝑦 = 8

Solve these for the stationary point ⟨𝑥, 𝑦,𝜆⟩ = ⟨4, 2, 2⟩. Note that 𝑓 ′[4, 2] = ⟨2, 4⟩which is
indeed collinear with 𝑔′[4, 2] = ⟨1, 2⟩.

Figure 26.2: Colinearity of Gradients

26.3.2 Lagrangian Formulation
Lagrangian functions provide a convenient way to summarize the conditions for opti-
mization discussed above. Let x = ⟨𝑥1, . . . , 𝑥𝑁⟩ and once again consider the problem of
maximizing 𝑓 [x] subject to 𝑔[x] = 0, for real functions 𝑓 and 𝑔 define on R𝑁 . Write the
Lagrangian function like this:

L = ⟨x,𝜆⟩ ↦→ 𝑓 [x] − 𝜆 𝑔[x] (26.47)

Note that this notation continues to conveniently represent all of the objective function
arguments as x.
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To seek a stationary point with respect to all of the variables of L, set its gradient to 0
and solve the resulting set of equations.

∇𝑓 [x] − 𝜆∇𝑔[x] = 0

𝑔[x] = 0
(26.48)

Example 26.7 Maximize 𝑥𝑦 subject to 𝑥 + 𝑦 = 4. As a convenience, we set up the
Lagrangian:

L[𝑥, 𝑦,𝜆] = 𝑥𝑦 − 𝜆(𝑥 + 𝑦 − 4)
Take the first derivatives and set to zero:

L𝑥 = 0 =⇒ 𝑦 − 𝜆 = 0
L𝑦 = 0 =⇒ 𝑥 − 𝜆 = 0

L𝜆 = 0 =⇒ 𝑥 + 𝑦 − 4 = 0

We will refer to these as the first-order conditions of the problem. The first two imply
𝑥 = 𝑦, we can plug this into the constraint to get 𝑥 = 2, 𝑦 = 2.

Exercise 26.1 Maximize 𝑧 = 𝑥𝛼𝑦𝛼 where 𝛼 = .5 and subject to 𝑥 + 𝑦 = 4. Use the method
of substitution, the equal slope method and the technique of Lagrange multipliers. And
show that all methods yield identical solutions.

Exercise 26.2 The principle of optimization plays a fundamental role in the microeco-
nomic theory of consumer choice. The principle is precisely stated in a two-good case
(𝑥, 𝑦) as the maximization of a utility function 𝑢[𝑥, 𝑦] subject to a budget constraint
𝑝𝑥𝑥 + 𝑝𝑦𝑦 = 𝑀.

Suppose 𝑢[𝑥, 𝑦] = 𝑥𝑦, solve the consumer utility optimization problem:

max 𝑢[𝑥, 𝑦] = 𝑥𝑦

subject to: 𝑝𝑥𝑥+ 𝑝𝑦𝑦 = 𝑀. Show that the optimal levels of 𝑥 and 𝑦 are given as 𝑥 = 𝑀/2𝑝𝑥
and 𝑦 = 𝑀/2𝑝𝑦 . Hint: the solution to this problem is a straight forward application of the
method of substitution or the method of Lagrange multipliers for constrained optimization
problems.

Exercise 26.3 Often the structural equations we use in our comparative static experiments
are derived from some underlying maximization behavior. For example, in the standard
consumer maximization problem, the consumer maximizes𝑢[𝑥, 𝑦] subject to 𝑝𝑥𝑥+𝑝𝑦𝑦 ≤ 𝐼.
Here 𝑥 and 𝑦 are two consumer goods, 𝑝𝑥 and 𝑝𝑦 are their prices, and 𝐼 is the consumer’s
income. Letting 𝜆 be the Lagrange multiplier associated with the budget constraint and
assuming an interior solution, the utility maximizing consumption bundle must satisfy
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the following three first order conditions:

𝑈𝑥[𝑥, 𝑦] − 𝜆𝑝𝑥 = 0 𝑈𝑦[𝑥, 𝑦] − 𝜆𝑝𝑦 = 0 𝑝𝑥𝑥 + 𝑝𝑦𝑦 = 𝐼

Solve this three equation system for the effects of a change in consumer income on the
consumption of 𝑥 and 𝑦. Note: 𝜆 is also endogenous.

Example 26.8 Consider the function defined by the rule 𝑓 [𝑥, 𝑦] = 𝑥𝑦. This clearly has no
extreme points. Now minimize this function subject to the constraint that 𝑥, 𝑦 ≥ 0. The
minimizer is clearly ⟨0, 0⟩. Note that the Hessian is indefinite at this point.

26.3.3 Second-Order Conditions

Naturally, the nature of a stationary point still reflects the curvature of the objective
function. However, only the behavior on the constraint set is relevant. This means that
we cannot simply examine the hessian of the objective function when thinking about the
relevant curvature. For example, a constrained maximum need not be locally maximal,
except on the constraint set.

One method to address this is by means of a bordered hessian. When there is a single
equality constraint, this simply adds the gradient of the constraint as a border for the
hessian of the Lagrangian.

H=

[
0 𝑔′[x]

(𝑔′[x])⊤ 𝐷2
xL[x]

]
(26.49)

When there are 𝑘 equality constraints and x is an 𝑁-vector, we need to check the last 𝑁 − 𝑘
leading principal minors. To ensure a maximum at x̂, we need 𝐷2

xL[x̂, �̂�] to be negative
definite on the constraint set. The determinant of the (order (𝑁 + 𝑘)) hessian matrix must
be (−1)𝑁 , and the signs of the last 𝑁 − 𝑘 leading principal minors must alternate in sign.
In the familiar case of 1 equality constraint and x is an 2-vector, we only need to check the
last leading principal minor, and its sign must be positive.

Example 26.9 Return to the example 𝑓 = ⟨𝑥, 𝑦⟩ ↦→ 𝑥𝑦 and 𝑔 = ⟨𝑥, 𝑦⟩ ↦→ 𝑥 + 2𝑦 − 8,
so that L = ⟨𝑥, 𝑦,𝜆⟩ ↦→ 𝑥𝑦 − 𝜆(𝑥 + 2𝑦 − 8). Recall that we found a stationary point
⟨𝑥, 𝑦,𝜆⟩ = ⟨4, 2, 2⟩. Construct the bordered hessian

|H| = det

0 1 2
1 0 1
2 1 0


= 4 (26.50)
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Example 26.10 Consider the consumer choice problem above. Recall that by substituting
the constraint we produced the unary function

𝑥 ↦→ 𝑢[𝑥, 𝛾[𝑥]]
with the first-order necessary condition at ⟨�̂� , �̂�⟩

𝑢𝑥[𝑥, 𝛾[𝑥]] + 𝑢𝑦[𝑥, 𝛾[𝑥]]𝛾′ = 0

This unary function is concave if

0 > 𝑢𝑥𝑥 + 𝑢𝑥,𝑦𝛾′ + 𝑢𝑦𝑥𝛾′ + 𝑢𝑦𝑦(𝛾′)2

Next, consider the bordered hessian for the Lagrangian, L = 𝑢[𝑥, 𝑦] − 𝜆(𝑝𝑥𝑥 + 𝑝𝑦𝑦 − 𝑤).

𝐻 =


0 −𝑝𝑥 −𝑝𝑦
−𝑝𝑥 𝑢𝑥𝑥 𝑢𝑥𝑦
−𝑝𝑦 𝑢𝑦𝑥 𝑢𝑦𝑦


Use the rule of Sarus to find the determinant:

|𝐻| = 𝑝𝑥𝑝𝑦(𝑢𝑥,𝑦 + 𝑢𝑦𝑥) − (𝑝2
𝑦𝑢𝑥𝑥 + 𝑝2

𝑥𝑢𝑦𝑦)

Factoring out −𝑝2
𝑦 , get

|𝐻| = −𝑝2
𝑦
(
𝑢𝑥𝑥 + (𝑝𝑥/𝑝𝑦)2𝑢𝑦𝑦 − (𝑝𝑥/𝑝𝑦)(𝑢𝑥,𝑦 + 𝑢𝑦𝑥)

)
Recalling 𝛾′ = −𝑝𝑥/𝑝𝑦 , the hessian determinant is positive iff and only iff the unary
condition for concavity is satisfied.

26.4 Generalizing: Convex Optimization with Binding Con-
straints

This section focuses on the maximization problem. (Minimization of 𝑓 is maximization of
− 𝑓 .) The basic problem is to maximize the continuously differentiable concave function
𝑓 : R𝑁 → R subject to being in a convex constraint set.

max
𝑥∈𝐶

𝑓 [𝑥] (26.51)

Here 𝐶 is is a non-empty convex set determined by the convex and continuously differen-
tiable constraint functions 𝑔𝑖 as follows:

𝑔𝑖[𝑥] ≤ 0 𝑖 ∈ [1 .. 𝐼] (26.52)
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The feasible set comprises the points that satisfy all the constraints. A problem may have
no feasible points; the constraints may be inconsistent. If the feasible set is nonempty,
then it is convex. (It is the intersection of the subgraphs of the 𝑔𝑖 , and the subgraphs of a
convex function are convex.) A solution is a maximizer in the set of feasible points. (If the
feasible set is unbounded, there may be no maximizer.)

Note that a local optimum for this problem is a global optimum. To see this, assume
that 𝑥ℓ is a local optimizer in the neighborhood H(𝑥ℓ . For any point 𝑥 ∉ H[𝑥ℓ ], we can form
a strict convex combination of 𝑥ℓ and 𝑥 with enough weight𝜆 on 𝑥ℓ to ensure we are inside
H[𝑥ℓ ]. If 𝑓 [𝑥] > 𝑓 [𝑥ℓ ], then concavity of 𝑓 would then imply that 𝑓

(
𝜆𝑥ℓ +(1−𝜆)𝑥

)
> 𝑓 [𝑥ℓ ],

violating the assumption that 𝑥ℓ was a local optimum. So we must have 𝑓 [𝑥] ≤ 𝑓 [𝑥ℓ ],
implying 𝑥ℓ is a global maximizer.

Looking forward, after additional investigation a solution can be characterized by
the following. At the solution value, the gradient of the objective function is a linear
combination of the gradients of the binding constraints. The weights of this linear combi-
nation are called Lagrange multipliers, and the multipliers for the nonlinear constraints
are nonnegative.

Recall that the lower contour sets of convex functions are convex, while the upper
contour sets of concave functions are convex.

Describe a level set by 𝑘 = 𝑓 [x]. Assume 𝑓 is smooth. Let x[𝑡] be a curve on this level
set, so ∇𝑓 · dx/d𝑡 = 0. That is, the gradient is perpendicular to the tangent to any curve
on the surface.

The key intuition of an optimum is that any movement you can make away from the
optimum is to your detriment. If the optimization problem is subject to constraints, the
movements you can make may of course be limited by these constraints. Our character-
ization of the optimum turns on this idea. A constraint is binding if it stops you from
moving in a direction that would be beneficial. E.g., a budget constraint is biding if it
prevents you from buying more utility-improving goods and services. This means that
the direction of increase of the objective function is in a direction that is infeasible due to
the constraint. This means that any movement in that direction would cause a constraint
violation. That is, any movement in a direction of increase for the objective function would
cause a disallowed increase in the value of the constraint function. So any of increase of
the objective function must be a direction of increase for the constraint function. This
means the gradients point in the same direction.

Recall that a vector h is a direction of increase of 𝑓 at x if it is in the positive half-space
of ∇𝑓 . That is, h · ∇𝑓 [x] > 0. So if we have an optimum where the gradient is nonzero,
there must not be an feasible points in the positive half-plane generated by the gradient of
the objective function. A traditional formulation of the two-good consumption problem
illustrates this, as in Figure 26.3.

If we add a second constraint, we cannot ask that the gradient of the two constraints and
the gradient of the objective function all point in the same direction. Instead we require
that the gradient of the objective function be a conical combination of the constraint
function gradients. This is illustrated by Figure 26.4. Here we require not only that the
budget constraint be satisfied, but that the consumer receive a minimum amount of the
first good.
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