
Lecture 25

Quadratic Forms

This lecture provides a short introduction to quadratic forms, which have important
applications in mathematical social science. Quadratic forms are central to the study of
multivariate optimization, where they help classify stationary points.

25.1 Introduction to Quadratic Forms
Recall that a function is 𝑘-homogeneous if scaling its arguments by 𝜆 scales the function
value by 𝜆𝑘 . Homogeneity of degree 2 is a core property of quadratic forms. When
𝑓 [𝜆x] = 𝜆2 𝑓 [x], it follows that 𝑓 is even (i.e., 𝑓 [−x] = 𝑓 [x]) and that 𝑓 [0] = 0.
Definition 25.1 (Quadratic Form) An algebraic form is a homogeneous polynomial;
each term is a monomial of identical degree. A quadratic form is a polynomial that is
homogeneous of degree two; each term is a monomial of degree two.

A quadratic form R𝑁
𝑞→ R has the following representation, which is often written as

𝑞 = x ↦→ x⊤ ·A · x.

𝑞 = x ↦→
𝑁∑
𝑟=1

𝑁∑
𝑘=1

𝑎𝑟,𝑘𝑥𝑟𝑥𝑘 (25.1)

Example 25.1 Let 𝑓 be the squaring function on the real numbers: 𝑓 = 𝑥 ↦→ 𝑥2. Then for
any scalar 𝜆, 𝑓 [𝜆𝑥] = (𝜆𝑥)2 = 𝜆2(𝑥2) = 𝜆2 𝑓 [𝑥]. So 𝑓 is a quadratic form on R. The upper
plot of Figure 25.1 illustrates this case.
Let 𝑓 be a binary real polynomial: 𝐹 = ⟨𝑥1, 𝑥2⟩ ↦→ 𝑥2

1 + 𝑥2
2. Then 𝑓 [𝜆x] = (𝜆𝑥1)2 + (𝜆𝑥2)2 =

𝜆2(𝑥2
1 + 𝑥2

2) = 𝜆2 𝑓 [x]. So 𝑓 is a quadratic form on R2.

25.1.1 Extrema of Quadratic Forms

Theorem 25.1 Let R𝑁
𝑞→ R be a quadratic form. If 𝑞 has an extremum, then 0 is an

extreme point of 𝑞.
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𝑥

𝑞[𝑥]
𝑥2

−𝑥2

Figure 25.1: Two Unary Quadratic Forms

Proof : Suppose x maximizes 𝑞. Then 𝑞[x] ≥ 0, since 𝑞[0] = 0. (A quadratic form always maps
the origin to zero.) If 𝑞[x] = 𝑘 > 0, then 𝑞[2x] = 4𝑘 > 𝑘, contradicting x being a maximizer.
So if x maximizes 𝑞, then 𝑓 [x] = 0 = 𝑓 [0]. The proof for a minimizer is symmetrical.

Example 25.2 Figure 25.1 displays the graph of two functions, 𝑥 ↦→ 𝑥2 and 𝑥 ↦→ −𝑥2.
The first has no maximum but has a minimum at 0. The second has no minimum but has
a maximum at 0.

Real quadratic forms that are positive definite or negative definite prove particularly
useful in mathematical social science. Recall that a function is positive definite if every
nonzero input produces a positive output, and a function is negative definite if every
nonzero input produces a negative output. From theorem 25.1, if 𝑞 is positive definite,
then 0 is the unique minimizer. Similarly, if 𝑞 is negative definite, then 0 is the unique
maximizer.

Example 25.3 (Extrema of a Unary Quadratic Form) The unary quadratic form 𝑥 ↦→ 𝑎𝑥2

has an extremum at 0, which is unique for 𝑎 ≠ 0. The sign of the parameter 𝑎 determines
the definiteness of the function, which correspondingly determines whether the extremum
is a minimum or a maximum. If 𝑎 < 0, the function is negative definite, and 0 is the unique
maximizer. If 𝑎 > 0, the function is positive definite, and 0 is the unique minimizer. Figure
25.1 illustrates this with two plots, for 𝑎 = 1 and 𝑎 = −1.
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Example 25.4 (Extrema of a Binary Quadratic Form) The binary quadratic form ⟨𝑥, 𝑦⟩ ↦→
𝑎(𝑥2 + 𝑦2) has an extremum at 0. The sign of the parameter 𝑎 determines the definiteness
of the function, which correspondingly determines if the extremum is a minimum or a
maximum. If 𝑎 > 0, this function is positive definite, and 0 is the unique minimizer. If
𝑎 < 0, this function is negative definite, and 0 is the unique maximizer.

Compare this to the binary real function ⟨𝑥, 𝑦⟩ ↦→ (𝑥 + 𝑦)2. In this case, 0 is still a
minimizer of 𝑞, but so is any point where 𝑥 = −𝑦. This function is nonnegative definite,
but it is not positive definite.

25.1.2 Extrema of Quadratic Functions

Theorem 25.1 tells us that unary quadratic forms have their extrema (if any) at 0. This
result provides insight to the extrema of any unary real quadratic function. For ease of
discussion, parameterize the family of such functions as

𝑓 = 𝑥 ↦→ 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (25.2)

where 𝑎 ≠ 0. A function in the family is quadratic but, unless 𝑏 = 0 and 𝑐 = 0, is not a
quadratic form. Nevertheless, it implies a similar simple relation between changes in the
argument and changes in the function value. Starting with a value 𝑥, consider a change
in the argument of size ℎ.

𝑓 [𝑥 + ℎ] = 𝑎(𝑥 + ℎ)2 + 𝑏(𝑥 + ℎ) + 𝑐
= 𝑎𝑥2 + 2𝑎𝑥ℎ + 𝑎ℎ2 + 𝑏𝑥 + 𝑏ℎ + 𝑐
= (𝑎𝑥2 + 𝑏𝑥 + 𝑐) + (2𝑎𝑥 + 𝑏)ℎ + 𝑎ℎ2

(25.3)

Since the first-order derivative is 𝑓 ′ = 𝑥 ↦→ 2𝑎𝑥 + 𝑏 and the second-order derivative is
𝑓 ′′ = 𝑥 ↦→ 2𝑎, write this as

𝑓 [𝑥 + ℎ] = 𝑓 [𝑥] + 𝑓 ′[𝑥]ℎ + 1
2 𝑓
′′[𝑥] ℎ2 (25.4)

Find the stationary point �̂� by solving 𝑓 ′[�̂�] = 0, so that �̂� = −𝑏/(2𝑎). Then

𝑓 [�̂� + ℎ] − 𝑓 [�̂�] = 1
2 𝑓
′′[�̂�] ℎ2 (25.5)

If �̂� is a maximizer, then 𝑓 [�̂� + ℎ] − 𝑓 [�̂�] ≤ 0 regardless of the value of ℎ. Looking at
(25.5), this means that at a maximum, any unary quadratic function must satisfy

1
2 𝑓
′′[�̂�] ℎ2 ≤ 0 (25.6)

Since ℎ2 > 0, this in turn requires that 𝑓 ′′[�̂�] ≤ 0. Furthermore, 𝑓 ′′[�̂�] < 0 ensures a strict
maximum. So 𝑎 < 0 ensures that �̂� = −𝑏/2𝑎 is a strict global maximizer, regardless of the
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values of 𝑏 and 𝑐. (The reasoning for a minimizer is analogous.) This is a global result for
quadratic functions, not just quadratic forms.

Relation to Completing the Square

Recall that a unary polynomial is called monic if its leading coefficient if its leading
coefficient is 1. Parameterize monic quadratic functions as 𝑥 ↦→ 𝑥2 + 𝑏𝑥 + 𝑐 and note that

𝑥2 + 𝑏𝑥 + 𝑐 = (𝑥 + 𝑏/2)2 + (𝑐 − 𝑏2/4) (25.7)

Re-expressing the function body in this way is called completing the square. Let 𝑦 = 𝑥+𝑏/2
and 𝑘 = 𝑐 − 𝑏2/4, the defining expression becomes 𝑦2 + 𝑘, which is clearly minimized at
𝑦 = 0 to produce a value of 𝑘. Equivalently, 𝑓 is minimized at −𝑏/2 to produce a value of
𝑐 − 𝑏2/4.

Completing the square of the general quadratic function 𝑥 ↦→ 𝑎𝑥2 + 𝑏𝑥 + 𝑐 requires
attention to the sign of 𝑎. Note that

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑎
((𝑥 + 𝑏/2𝑎)2 + (𝑐/𝑎 − (𝑏/2𝑎)2) (25.8)

This time, define 𝑦 = 𝑥 + 𝑏/(2𝑎) and 𝑘 = 𝑐 − (𝑏/2𝑎)2, so that the expression (𝑦2 + 𝑘) is
minimized at 𝑦 = 0 to produce a value of 𝑘. Regardless of the sign of 𝑎, the extreme value
of the function is 𝑐/𝑎−(𝑏/2𝑎)2. But if 𝑎 > 0 then the function is minimized at −𝑏/2𝑎, while
if 𝑎 < 0 then it is maximized at −𝑏/2𝑎.

Example 25.5 (Laffer Curve) The Laffer curve postulates that tax revenue is zero if the tax
rate is 0% or 100% but is positive in the real interval (0 .. 1). Represent the tax-revenue
function 𝑟 : [0, 1] → R≥0 by the quadratic function 𝑟 = 𝑡 ↦→ 𝛼 (𝑡 − 𝑡2), where 𝛼 > 0.
Solve for the tax maximizing 𝑡 by completing the square. That is, rewrite this function as
𝑟 = 𝑡 ↦→ −𝛼 ((𝑡 − 1/2)2 − 1/4) , so the extremum evidently occurs at 𝑡 = 1/2. Since −𝛼 < 0,
this is the unique maximizer of the tax-revenue function.

25.1.3 Generalizing to Other Functions
This observation about the role of the second-order derivative generalizes even further,
when a local result suffices. As long as 𝑓 is continuously twice differentiable, the following
second-order Taylor approximation of the function provides a good local approximation of
the function near 𝑥.

𝑓 [𝑥 + ℎ] ≈ 𝑓 [𝑥] + 𝑓 ′[𝑥]ℎ + 1
2 𝑓
′′[𝑥]ℎ2 (25.9)

In the quadratic case, as shown above, this is an equality. More generally, this approximia-
tion becomes very good as ℎ becomes small. The standard first-order necessary condition
for an extremum, 𝑓 ′[�̂�] = 0, can thereby be supplemented with second-order conditions.
Setting 𝑓 ′[𝑥] = 0,

𝑓 [�̂� + ℎ] − 𝑓 [�̂�] ≈ 1
2 𝑓
′′[�̂�]ℎ2 (25.10)
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A second-order necessary condition for a local maximum is therefore 𝑓 ′′[𝑥] ≤ 0, and a
second-order sufficient condition for a strict local maximum 𝑓 ′′[𝑥] < 0.

Example 25.6 Let 𝑓 = 𝑥 ↦→ sin[𝑥] so that 𝑓 ′ = 𝑥 ↦→ cos[𝑥] and 𝑓 ′′ = 𝑥 ↦→ − sin[𝑥].
Let �̂� = 𝜋/2 radians, and note that cos[𝜋/2] = 0 and − sin[𝜋/2] = −1. So 𝑓 ′[�̂�] = 0 and
𝑓 ′′[�̂�] < 0, satisfying the necessary and sufficient conditions for strict local maximum.

Example 25.7 Let 𝑓 = 𝑥 ↦→ 𝑥4 so that 𝑓 ′ = 𝑥 ↦→ 4𝑥3 and 𝑓 ′′ = 𝑥 ↦→ 12𝑥2. Let �̂� = 0, and
note that 𝑓 ′[�̂�] = 0 and 𝑓 ′′[�̂�] = 0. This satisfies the second-order necessary condition for
strict local minimum. In fact, 0 is a global minimizer of this function. Nevertheless, the
second-order sufficient condition is not satisfied.

25.1.4 Matrix Representation

Recall from definition 25.1 that 𝑞[x] = ∑𝑁
𝑟=1

∑𝑁
𝑘=1 𝑎𝑟,𝑘𝑥𝑟𝑥𝑘 describes any quadratic form

R𝑁
𝑞→ R. Give this the matrix representation x⊤Ax, where the 𝑟, 𝑘-th element of A is 𝑎𝑟,𝑘

and the 𝑘-th element of the column vector x is 𝑥𝑘 .1

Consider the binary quadratic form, R2 𝑞→ R represented by the matrix A.

A =

[
𝑎11 𝑎12
𝑎21 𝑎22

]
(25.11)

If A is a diagonal matrix, so that the off-diagonal elements 𝑎12 and 𝑎21 are zero, 𝑞[x] is
the weighted sum of squares 𝑎11𝑥2

1 + 𝑎22𝑥2
2. In the special case where A = I2, 𝑞[x] is the

simple sum of squares 𝑥2
1 + 𝑥2

2, which can never be negative and will only be zero when
x = 0. This is an example of a positive definite quadratic form.

Each quadratic form has a unique representation as a symmetric matrix. This implies
that the properties of the quadratic form can be studied as properties of its associated
symmetric matrix. For example, as shown later in this lecture, the second-order conditions
for extrema have natural matrix characterizations.

1By convention, in this context, the result of this matrix multiplication is a scalar instead of a 1×1 matrix.
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Example 25.8 Consider any real, symmetric 2 × 2 matrix

A =

[
𝑎11 𝑎12
𝑎12 𝑎22

]

The associated quadratic form is

𝑞[x] = x⊤Ax

= 𝑎11𝑥2
1 + 2𝑎12𝑥1𝑥2 + 𝑎22𝑥2

2

If A = I2 then 𝑞 is positive at all nonzero vectors and has a unique global minimum at 0.
Since 𝑞 is positive definite in this case, I2 is a positive definite matrix. However if A = −I2,
then 𝑞 is negative at all nonzero vectors and has a unique global maximum at 0. Since
𝑞 is negative definite in this case, say that −I2 is a negative definite matrix. Figure 25.2
illustrates these two cases.

Figure 25.2: Definite Quadratic Forms

Since symmetric matrices have particularly convenient properties, it is conventional
to use the symmetric matrix representation of any quadratic form 𝑞. To see that such a
matrix exists, note that the properties of tranposition imply that x⊤Ax = x⊤A⊤x. This
means that if 𝑞 can be represented by A, it can also be represented by A⊤. It also means
that any convex combination of these two matrices also provides a matrix representation.
Of particular interest is the symmetric representation.

𝑞[x] = x⊤
(

1
2A +

1
2A
⊤
)
x (25.12)
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If the coefficient matrix A is not symmetric in some setting, it is therefore conventional to
represent the quadratic form by the unique symmetric matrix Q = (1/2)(A +A⊤).

Example 25.9 Suppose we have

A =

[
3 4
5 6

]
Q = (1/2)(A +A⊤) =

[
3 4.5

4.5 6

]

Note that x⊤Ax = x⊤Qx. In more detail, let x⊤ = ⟨𝑥1, 𝑥2⟩. Then

x⊤Ax = 3𝑥2
1 + 9𝑥1𝑥2 + 6𝑥2

2 = x⊤Qx

Example 25.10 As a more abstract example, suppose 𝑞[x] = 𝑎11𝑥2
1 + 𝑎12𝑥1𝑥2 + 𝑎22𝑥2

2. Let

A =

[
𝑎11 𝑎12
0 𝑎22

]
Q =

[
𝑎11 𝑎12/2
𝑎12/2 𝑎22

]
(25.13)

then 𝑞[x] = x⊤Ax = x⊤Qx, where Q = (1/2)(A +A⊤) .
Recall that from definition 25.1, a quadratic form 𝑞 : R𝑁 → R can be represented as

𝑞[x] = ∑𝑁
𝑟=1

∑𝑁
𝑘=1 𝑎𝑟,𝑘𝑥𝑟𝑥𝑘 . Note that the inner summation involves the dot product of the

𝑟-th row of A and the vector x. That is,

𝑞[x] =
𝑁∑
𝑟=1

𝑥𝑟
𝑁∑
𝑘=1

𝑎𝑟,𝑘𝑥𝑘

=
𝑁∑
𝑟=1

𝑥𝑟(A𝑟,: · x)
(25.14)

So if 𝑥𝑟 = 0, the 𝑟-th row of A makes no contribution to the result. This makes intuitive
sense, because x⊤A is a weighted sum of the rows of A, and the 𝑟-th row receives zero
weight. However, the order of summation is arbitrary, so we could equally well write this
as

𝑞[x] =
𝑁∑
𝑘=1

( 𝑁∑
𝑟=1

𝑎𝑟,𝑘𝑥𝑟
)
𝑥𝑘

=
𝑁∑
𝑘=1
(x⊤ ·A : ,𝑘)𝑥𝑘

(25.15)

So it is equally true that if the 𝑥𝑘 = 0, then the 𝑘-th column of A contributes nothing to
the result. This makes intuitive sense, because Ax is a weighted sum of the columms of
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A, and the 𝑘-th column receives zero weight. In short, if 𝑥𝑖 = 0, then the 𝑖-th row and 𝑖-th
column of A contribute nothing to the result.

Here is another way to make the same observation. As in Lecture 21, let A𝑟,𝑘 be the
submatrix produced from A by discarding its 𝑟-th row and 𝑘-th column. Similarly, let x𝚤
be the vector x but with its 𝑖-th entry deleted. Then when 𝑥𝑖 = 0,

x⊤Ax = x⊤𝚤 A𝑖 ,𝑖x𝚤 (25.16)

Example 25.11 Consider the following matrix A and vector b.

A =


4 5 9 4

10 8 7 9
6 5 1 5
5 5 7 4


x =


4
5
0
2


Note that 𝑥3 = 0. Therefore produce

A3,3 =


4 5 4

10 8 9
5 5 4


x3̂ =


4
5
2


Compute x⊤Ax = 792 = x⊤

3̂
A3,3x3̂.

25.2 Definite Matrices

A quadratic form R𝑁
𝑞→ R may have the special property that determing the sign of

function value does not require any information about the argument vector. Consider a
symmetric matrix Q representing such a quadratic form. Such a matrix will correspond-
ingly have the special property that determing the sign of x⊤Qx does not require any
information about x. There, it is conventional to assign to any real symmetric matrix the
definiteness of its quadratic form.2

• Q is nonnegative definite iff x⊤Qx ≥ 0 ∀x ∈ R𝑛 .

• Q is nonpositive definite iff x⊤Qx ≤ 0 ∀x ∈ R𝑛 .

If neither of these conditions apply, the matrix is indefinite.
A quadratic form 𝑞 will always have 𝑞[0] = 0, but some quadratic forms definitely

have a strict sign everywhere else. These cases produce refinements of the definiteness
definitions, which are substantially easier to test for.

• Q is positive definite iff x⊤Qx > 0 ∀x ∈ R𝑛 − {0}.
2Some authors use the term positive semidefinite instead of nonnegative definite and the term negative

semidefinite instead of nonpositive definite.
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• Q is negative definite iff x⊤Qx < 0 ∀x ∈ R𝑛 − {0}.
A quadratic form is negative definite iff it has a unique maximum at zero, and it is positive
definite iff it has a unique minimum at zero.
Theorem 25.2 (Definiteness and Nonsingularity) Positive definite and negative definite
matrices are nonsingular.
Proof : Show this by showing that the columns of a positive definite matrix Q are linearly

independent. Suppose Qx = 0 for some x ≠ 0; then x⊤Qx = 0 for some x ≠ 0 and Q is
not positive definite. The proof for negative definite matrices is the same.

Theorem 25.3 (Definite Inverse) A real symmetric matrix is positive (negative) definite
iff it has a positive (negative) definite inverse.
Proof : To show this for a symmetric positive definite matrix Q, note that Q−1 = Q−1QQ−1. So

x⊤Q−1x = x⊤Q−1QQ−1x = y⊤Qy

where y = Qx.

Recall from Lecture 21 that nonsingular matrices have nonzero determinants. In
addition, we can sign the determinate of definite matrices. One way to see this is to
observe that a weighted average of positive definite matrices must be positive definite.
So for any positive definite matrix Q, any weighted average of the identity matrix and Q
must be positive definite.
Theorem 25.4 A positive definite matrix has a positive determinant.
Proof : Define the function 𝑓 : [0 .. 1] → R by 𝑓 = 𝜆 ↦→ det[(1−𝜆)I +𝜆Q]. By definition of the

determinate, 𝑓 is a polynomial in 𝜆, so it is a continuous function. Note 𝑓 [0] = det I = 1.
By the intermediate value theorem, for 𝑓 [1] = detQ to be negative, there would have to be
some value of 𝜆 in [0 .. 1] that produces 𝑓 [𝜆] = 0. However, this is impossible, because a
weighted average of positive definite matrices is positive definite, and a positive definite
matrix is nonsingular and therefore must have a nonzero determinant.

Example 25.12 If A =
[

2 1
1 1

]
then (1 − 𝜆)I + 𝜆A =

[
1+𝜆 𝜆
𝜆 1

]
, which has the determinant

1 + 𝜆 − 𝜆2. This polynomial in 𝜆 is positive for 𝜆 ∈ [0 .. 1].

Exercise 25.1 If Q is negative definite, what is the sign of its determinant?

25.2.1 Testing for Definiteness
It is evidently not practical to test a matrix Q for definiteness by systematically computing
the sign of x⊤Qx for all the possible values of x. Fortunately, there are other ways to
test for definiteness. This is especially simple for diagonal matrices. A diagonal matrix is
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positive definite iff all its diagonal elements are positive, and it is negative definite iff all
its diagonal elements are negative.

If A is a diagonal matrix, then x⊤Ax =
∑𝑁
𝑛=1 𝑎𝑛,𝑛𝑥

2
𝑛 . This is a weighted sum of squares.

For a definite matrix, the sign of this expression does not depend on the value of x. So to
be positive definite, a diagonal matrix must have only positive diagonal elements. This is
also sufficient for the matrix to be positive definite, since it assures all positive weights in
the weighted sum of squares. Similarly, to be negative definite, the diagonal matrix must
have only negative diagonal elements, and this is sufficent for the matrix to be negative
definite.

Example 25.13 Consider the quadratic form represented by the identity matrix, I𝑁 . In
this casex⊤Ix = x⊤x is the sum of squared elements, which is always positive for nonzero
x.

Extend this line of argument to any real symmetric matrix A. Let 𝑞 = x ↦→ x⊤Ax
be the associated quadratic form, and let e𝑖 be the 𝑖-th standard unit vector. Note that
𝑞[e𝑖] = 𝑎𝑖 ,𝑖 . Therefore 𝑎𝑖 ,𝑖 > 0 is necessary for A to be positive definite. Similarly, all
diagonal elements must be negative for A to be negative definite. A constant sign on
elements on the diagonal is a necessary condition for definiteness. A quick examination
of the diagonal is therefore helpful when determining the definiteness of matrices: any
sign variation along the diagonal implies that the matrix is indefinite. However, as
illustrated by the following example, sign consistency along the diagonal is not sufficient
for definiteness.

Example 25.14

[
1 1

] [
1 2
2 1

] [
1
1

]
= 6

[−1 1
] [

1 2
2 1

] [−1
1

]
= −2

Aside from diagonal matrices, finding sufficient conditions for definiteness therefore
requires more work. Equation (25.16) implies that A𝑖 ,𝑖 is positive definite whenever A is
positive definite. This in turn implies that every every principal submatrix of a positive
definite matrix is itself positive definite. Since positive definite matrices have positive
determinants, all of the principal minors of a positive definite matrix are positive. In fact,
positive leading principal minors also ensures positive definiteness.
Definition 25.2 A 𝑘-th order principal submatrix of the matrix Q𝑁×𝑁 is any 𝑘 × 𝑘
submatrix of Q created by deleting all but 𝑘 rows and the 𝑘 corresponding columns. (That
is, retaining row 𝑖 implies retaining column 𝑖.) A 𝑘-th order principal minor is the
determinant of a 𝑘-th order principal submatrix. A 𝑘-th order leading principal submatrix
is formed by keeping only the first 𝑘 rows and columns, and its determinant is called the
𝑘-th order leading principal minor.3

3Among economists this terminology is not completely standard. For example Chiang and Wainwright
(2004, p.322) use the term principal minor to denote only leading principal minors.
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Remark 25.1 An 𝑁 × 𝑁 matrix will have 𝐶[𝑁, 𝑘] principal submatrices of order 𝑘.

Example 25.15 A 3 × 3 matrix has one principle submatrix of order 1. three principle
submatrices of order 2, and three principle submatrices of order 1.

Theorem 25.5 A real symmetric matrix Q is positive definite iff its leading principal
minors are positive. A real symmetric matrix Q is negative definite iff 𝑎11 < 0 and its
leading principal minors alternate sign.
Proof : See Simon and Blume (1994, ch.16.4).

Testing for semidefiniteness is unfortunately more complicated: it involves looking at
all the principal minors.

Theorem 25.6 A real, symmetric matrix Q is nonnegative-definite iff each of its principal
minors is nonnegative.
Proof : Necessity follows from the earlier discussion. For sufficiency, see Simon and Blume

(1994, ch.16.4).

It follows that a real, symmetric matrix Q is nonpositive-definite iff each of its 𝑘-th order
principal minors has sign (−1)𝑘 or is zero.

Exercise 25.2 Consider the following two symmetric matrices.

A =

[
0 0
0 𝑎22

]
B =

[
𝑎 𝑎
𝑎 𝑎

]

Can A be positive definite? Can A be nonnegative definite? Can B be positive definite?
Can B be nonnegative definite?

Diagonal matrices once again assist with insight. Let A be a diagonal matrix. Then

𝑞[x] = x⊤Qx =
𝑁∑
𝑖=1

𝑎𝑖 ,𝑖𝑥2
𝑖 (25.17)

That is, 𝑞[x] is a weighted sum of squares. Note that 𝑞[e𝑖] = 𝑎𝑖 ,𝑖 , therefore a necessary
condition for A to be nonnegative definite is that 𝑎𝑖 ,𝑖 ≥ 0. This is also sufficient, for a
positively weighted sum of squares must be positive.

Nonnegative diagonal elements are also the necessary and sufficient condition for all
principal minors to be either positive or zero, since each of these evaluate to a product
of 𝑘 elements from the diagonal of A. (Remember, A is diagonal.) This ensures that the
leading principal minors are nonnegative, but it does not conversely ensure that examining
them is sufficient to determine definiteness. For example, if 𝑎11 = 0 then all the leading
principal minors evaluate to zero. To be sure no element on the diagonal is negative,
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we may need to examine all the first order principal minors (i.e., all the elements on the
diagonal).

The reasoning for nonpositive definite diagonal matrices is parallel. Since 𝑞[e𝑖]𝑎𝑖 ,𝑖 , a
necessary condition for the diagonal matrix A to be nonpositive definite is that 𝑎𝑖 ,𝑖 ≤ 0.
This is also sufficient, for a negatively weighted sum of squares must be negative. This is
also the necessary and sufficient condition for all principal minors to be either negative
or zero, since each of these evaluate to a product of 𝑘 elements from the diagonal of Q.
But again, while this condition ensures that the leading principal minors are nonpositive,
it does not conversely ensure that examining them is sufficient to determine definiteness.
For example, if 𝑎1,1 = 0 then all the leading principal minors evaluate to zero. To be sure
no element on the diagonal is positive, we may need to examine all the first order principal
minors (i.e., all the elements on the diagonal).

25.3 Linear Constraints

The previous section focuses on the characteristics of quadratic forms on R𝑁 . The char-
acteristics on a subspace of R𝑁 can differ in useful ways. This section characterizes the
subspace by a linear constraint: for some matrix G𝑅×𝑁 , the constraint is that Gx = 0.
(Note that x = 0 always satisfies the constraint, so the constraint set is not empty.) While
the previous section demonstrates how to characterize the definiteness of a quadratic form
on R𝑁 , it can be a bit more work to characterize its behavior on the subspace {x|Gx = 0}.

Of course if the quadratic form is definite on a vector space, it is also definite on any
subspace. But a quadratic form that is indefinite on a vector space may nevertheless be
definite on a subspace. For example, 𝑥 ↦→ 𝑥3 is positive definite on R≥0.

Example 25.16 Consider the quadratic form X
𝑞→ R defined by 𝑞 = ⟨𝑥1, 𝑥2⟩ ↦→ 𝑥2

1 − 𝑥2
2,

which is indefinite on the domain R2. Correspondingly Q =
[ 1 0

0 −1
]

is indefinite. Define
the constraint set to be X = {x ∈ R2 | ⟨1, 0⟩ · x = 0}. On this restricted domain, 𝑥1 = 0.
Note that 𝑞[0, 𝑥2] = −𝑥2

2 is negative definite on the constraint set.

25.3.1 Testing for Definiteness
Suppose the quadratic form 𝑞, characterized by the real symmetric matrix Q, is defined on
the subspace X = {x ∈ R𝑁 | Gx = 0}, where 𝐺 is an 𝑅 ×𝑁 matrix with rank 𝑅. Construct
the bordered matrix Q as follows:

Q =

[
0 G
G⊤ Q

]
(25.18)

The bordered matrix Q will characterize the definiteness of the quadratic form 𝑞 on
this subspace (Hassell and Rees, 1993). Once again the test for definiteness examines the
leading principal minors. Obviously the first𝑅 leading principal minors ofQ evaluate to 0,
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so any information will be contained in the rest. It turns out that to test for definiteness we
can discard the next 𝑅 leading principal minors as well, so that we only need to consider
the last 𝑁 − 𝑅 leading principal minors.

The quadratic form 𝑞 is postive definite on the restricted domain iff (−1)𝑅
���Q��� > 0, and

the last 𝑁 − 𝑅 leading principal minors all share the sign of Q. (Here 𝑅 is the number
of constraints, so for a single constraint, this means these leading principal minors must
all be negative.) The quadratic form 𝑞 is negative definite on its domain if (−1)𝑁

���Q��� > 0,
and the last 𝑁 − 𝑅 leading principal minors alternate in sign. (Here 𝑁 is the number of
variables.) For a single constraint,

���Q��� is the 𝑁 + 1-th leading principal minor, so in this
case these leading principal minors must have the following characteristic: a 𝑘-th order
leading principal minors must be positive when 𝑘 is odd and negative when 𝑘 is even.)

This section focuses on on the single-constraint case. (For more generality, see Debreu
(1952), which also gives conditions for semidefiniteness.) Let R2 𝑞→ R be a quadratic form
represented by the symmetric matrix A2×2. Given a vector g = ⟨𝑔1, 𝑔2⟩, construct the
constraint set X as the the nullspace of this vector (null[g]). That is, X = {⟨𝑥1, 𝑥2⟩ ∈ R2 |
𝑔1𝑥1 + 𝑔2𝑥2 = 0}, or equivalently, X = {x ∈ R2 | g ·x = 0}. As long as g ≠ 0, the constraint
set comprises the points along a line. Characterize these points parametrically as

X = {𝑡 · ⟨𝑔2,−𝑔1⟩ | 𝑡 ∈ R} (25.19)

When restricted to this constraint set, the quadratic form now involves the single variable
𝑡.

𝑞𝑟 = 𝑡2⟨𝑔2,−𝑔1⟩⊤A⟨𝑔2,−𝑔1⟩ (25.20)

Naturally enough, the constrained problem has a unary expression, since any x ∈ X
lies on a line through the origin. The result may be considered as an unconstrained
unary quadratic form, subject to the earlier analysis of this form. For example, this unary
quadratic form is positive definite iff ⟨𝑔2,−𝑔1⟩⊤A⟨𝑔2,−𝑔1⟩ > 0. Expanding this expression
and then imposing symmetry produces

⟨𝑔2,−𝑔1⟩⊤A⟨𝑔2,−𝑔1⟩ = 𝑔2
2𝑎1,1 − 𝑔1𝑔2𝑎1,2 − 𝑔1𝑔2𝑎2,1 + 𝑔2

1𝑎2,2

= 𝑔2
2𝑎1,1 − 2𝑔1𝑔2𝑎1,2 + 𝑔2

1𝑎2,2
(25.21)

Algebraically, this expression negates the determinant of the following bordered matrix.

Q =


0 𝑔1 𝑔2
𝑔1 𝑎1,1 𝑎1,2
𝑔2 𝑎1,2 𝑎2,2
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That is ���Q��� = −𝑔1(𝑔1𝑎2,2 − 𝑎1,2𝑔2) + 𝑔2(𝑔1𝑎1,2 − 𝑎1,1𝑔2)
= −(𝑎1,1𝑔2

2 − 2𝑎1,2𝑔1𝑔2 + 𝑎2,2𝑔2
1)

= −⟨𝑔2,−𝑔1⟩⊤A⟨𝑔2,−𝑔1⟩

So if
���Q��� < 0 then our quadratic form is positive definite, whereas if

���Q��� > 0 then our
quadratic form is negative definite. Checking the value of this determinant is therefore a
common and convenient check of the second-order conditions for an extremum.

Perhaps surprisingly, this procedure works in higher dimeions. For example, let
R3 𝑞→ R be a quadratic form represented by the symmetric matrix A3×3. Given a vector
g = ⟨𝑔1, 𝑔2, 𝑔3⟩, once again construct the constraint set X as the nullspace of the vector
(null[g]). That is, X = {⟨𝑥1, 𝑥2, 𝑥3⟩ ∈ R3 | 𝑔1𝑥1 + 𝑔2𝑥2 + 𝑔3𝑥3 = 0}, or equivalently,
X = {x ∈ R2 | g · x = 0}. As long as g ≠ 0, the constraint set comprises the points of a
plane. Consider the determinant of a bordered symmetric matrix.

Q =


0 𝑔1 𝑔2 𝑔3
𝑔1 𝑎1,1 𝑎1,2 𝑎1,3
𝑔2 𝑎2,1 𝑎2,2 𝑎2,3
𝑔3 𝑎3,1 𝑎3,2 𝑎3,3


Expand across the first row to get���Q��� =𝑔2

1(𝑎2,3𝑎3,2 − 𝑎2,2𝑎3,3) + 𝑔2
2(𝑎1,3𝑎3,1 − 𝑎1,1𝑎3,3) + 𝑔2

3(𝑎1,2𝑎2,1 − 𝑎1,1𝑎2,2)
+ 𝑔3𝑔1(𝑎1,3𝑎2,2 − 𝑎1,2𝑎2,3) + 𝑔3𝑔1(𝑎2,2𝑎3,1 − 𝑎2,1𝑎3,2)
+ 𝑔2𝑔1(𝑎1,2𝑎3,3 − 𝑎1,3𝑎3,2) + 𝑔2𝑔1(𝑎2,1𝑎3,3 − 𝑎2,3𝑎3,1)
+ 𝑔2𝑔3(𝑎1,1𝑎2,3 − 𝑎1,3𝑎2,1) + 𝑔2𝑔3(𝑎1,1𝑎3,2 − 𝑎1,2𝑎3,1)

Assume 𝑔1 ≠ 0, which means our constraint matrix has rank 1. We need to consider
the last 𝑁 − 𝑅 = 2 − 1 = 1 leading principal minors of Q. Therefore compute

We can readily see that this result makes good sense. Solve our constraint for 𝑥1 =
−(𝑔2/𝑔1)𝑥2 and substitute this into our quadratic form to get

𝑞[x] = x⊤Qx

= 𝑎1,1𝑥2
1 + 2𝑎1,2𝑥1𝑥2 + 𝑎2,2𝑥2

2

= 𝑎1,1
((𝑔2/𝑔1)𝑥2

)2 − 2𝑎1,2(𝑔2/𝑔1)𝑥2𝑥2 + 𝑎2,2𝑥2
2

=
(
𝑎1,1(𝑔2/𝑔1)2 − 2𝑎1,2(𝑔2/𝑔1) + 𝑎2,2

)
𝑥2

2

=
(
𝑎1,1𝑔2

2 − 2𝑎1,2𝑔2𝑔1 + 𝑎2,2𝑔2
1
)
𝑥2

2/𝑔2
1

The expression in parentheses is opposite in sign to our condition for definiteness.
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Exercise 25.3 Consider a real symmetric matrix Q𝑁×𝑁 and a linear constraint set 𝑆 =
{𝑥 ∈ R𝑁 |𝑔⊤𝑥 = 0}. Recall that 𝑆 is a subspace of R𝑁 . Let the matrix Q𝑁×𝑁 map R𝑁 to that
subspace, and assume the quadratic form represented by Q is positive definite on this
subspace. Let 𝑥 ∈ R𝑁 be any nonzero vector. Find a problem in the following reasoning.

For any nonzero vector y ∈ 𝑆 we know y⊤Qy > 0. For any vector 𝑥 ∈ R we know
Qx ∈ 𝑆. Consider 𝑥 ≠ 0, so that (Qx)⊤QQx > 0. But (Qx)⊤QQx = x⊤Q

⊤
QQx. Define

C = Q
⊤
QQ. Since for any nonzero x we have x⊤Cx > 0, we can conclude that C is

positive definite.

25.4 Derivatives

Recall that definition 25.1 implies that a quadratic form 𝑞 : R𝑁 → R can be represented as
𝑞[x] = ∑𝑁

𝑟=1
∑𝑁
𝑘=1 𝑎𝑟,𝑘𝑥𝑟𝑥𝑘 . Produce the first-order partial derivative with respect to 𝑥𝑘 , as

usual.
𝜕𝑞[x]
𝜕𝑥𝑘

=
𝑁∑
𝑟=1

𝑎𝑘𝑟𝑥𝑟 +
𝑁∑
𝑟=1

𝑎𝑟𝑘𝑥𝑟 (25.22)

Based on (25.22), a column vector of first-order partial derivatives can be written as follows.

𝜕𝑞[x]
𝜕x

= (A +A⊤)x (25.23)

Similarly, a row vector of first-order partial derivatives can be written as

𝜕𝑞[x]
𝜕x⊤

= x⊤(A⊤ +A) (25.24)

This row vector is the gradient vector of the quadratic form. When A is symmetric, the
vectors of partial derivatives simplify to

𝜕𝑞[x]
𝜕x

= 2Ax
𝜕𝑞[x]
𝜕x⊤

= 2x⊤A (25.25)

Next consider the second-order partial derivatives. For aribtrary variables 𝑥𝑟 and 𝑥𝑘 ,

𝜕2𝑞[x]
𝜕𝑥𝑟𝜕𝑥𝑘

= 𝑎𝑟𝑘 + 𝑎𝑘𝑟 (25.26)

By inspection, a matrix of second-order partial derivatives can be written as

𝜕2𝑞[x]
𝜕x⊤𝜕x

= A⊤ +A (25.27)
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This is the hessian matrix of the quadratic form. When A is symmetric this simplifies to

𝜕2𝑞[x]
𝜕x⊤𝜕x

= 2A (25.28)

25.4.1 Derivatives of the Binary Quadratic Form
If A2×2 represents the quadratic form 𝑞, then the first-order derivatives are

𝜕𝑞
𝜕x

=

[
𝜕𝑞
𝜕𝑥1
𝜕𝑞
𝜕𝑥2

]
=

[
2𝑎11𝑥1 + (𝑎12 + 𝑎21)𝑥2
2𝑎22𝑥2 + (𝑎12 + 𝑎21)𝑥1

]
= (A +A⊤)x (25.29)

When A is symmetric, as we typically assume, this becomes

𝜕𝑞
𝜕x

= 2
[
𝑎11𝑥1 + 𝑎12𝑥2
𝑎22𝑥2 + 𝑎12𝑥1

]
= 2Ax (25.30)

The second-order derivatives are

𝜕2𝑞
𝜕x⊤𝜕x

=


𝜕2𝑞
𝜕𝑥2

1

𝜕2𝑞
𝜕𝑥1𝜕𝑥2

𝜕2𝑞
𝜕𝑥2𝜕𝑥1

𝜕2𝑞
𝜕𝑥2

2


=

[
2𝑎11 (𝑎12 + 𝑎21)

(𝑎12 + 𝑎21) 2𝑎22

]
= (A⊤ +A) (25.31)

When A is symmetric, this becomes

𝜕2𝑞
𝜕x⊤𝜕x

= 2
[
𝑎11 𝑎12
𝑎12 𝑎22

]
= 2A (25.32)

25.4.2 Derivatives of a General Quadratic Functional: Bivariate Case
A general representation of a quadratic polynomial isx ↦→ x⊤Ax+b⊤x+𝑐. In the bivariate
case,

A =

[
𝑎11 𝑎12
𝑎21 𝑎22

]
b =

[
𝑏1
𝑏2

]
x =

[
𝑥1
𝑥2

]

Let 𝑓 be this bivariate quadratic function:

𝑓 = ⟨𝑥1, 𝑥2⟩ ↦→ 𝑎11𝑥2
1 + (𝑎12 + 𝑎21)𝑥1𝑥2 + 𝑎22𝑥2

2 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑐 (25.33)

Write the column vector of first-order partial derivatives as

𝑓 ′[x] = 𝜕 𝑓 [x]
𝜕x

=

[
𝜕 𝑓 [x]/𝜕𝑥1
𝜕 𝑓 [x]/𝜕𝑥2

]

=

[
2𝑎11𝑥1 + (𝑎12 + 𝑎21)𝑥2 + 𝑏1
2𝑎22𝑥2 + (𝑎12 + 𝑎21)𝑥1 + 𝑏2

]
= (A +A⊤)x + b

(25.34)
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Imposing symmetry on A produces 𝑓 ′ = x ↦→ 2Ax + b. In other words, finding the
stationary points is a matter of solving a linear system of equations. WhenA is symmetrica,
this system has the form Ax = b′, where b′ = −(1/2)b. This is familiar territory.

Similarly

𝑓 ′′[x] def
=

𝜕2 𝑓 [x]
𝜕x𝜕x⊤

=

[
𝜕2 𝑓 [x]/𝜕𝑥2

1 𝜕2 𝑓 [x]/𝜕𝑥1𝜕𝑥2
𝜕2 𝑓 [x]/𝜕𝑥2𝜕𝑥1 𝜕2 𝑓 [x]/𝜕𝑥2

2𝜕 𝑓 [x]/𝜕𝑥2

]

=

[
2𝑎11 𝑎12 + 𝑎21

𝑎12 + 𝑎21 2𝑎22

]
= (A⊤ +A)

(25.35)

Imposing symmetry on A produces 𝑓 ′′ = x ↦→ 2A.
Now suppose we have a change in the argument of size ℎ.

𝑓 [x + h] =𝑎11(𝑥1 + ℎ1)2 + (𝑎12 + 𝑎21)(𝑥1 + ℎ1)(𝑥2 + ℎ2)
+ 𝑎22(𝑥2 + ℎ2)2 + 𝑏1(𝑥1 + ℎ1) + 𝑏2(𝑥2 + ℎ2) + 𝑐

(25.36)

so that

𝑓 [x + h] − 𝑓 [x] =𝑎11(2𝑥1ℎ1 + ℎ2
1) + (𝑎12 + 𝑎21)(𝑥1ℎ2 + 𝑥2ℎ1 + ℎ1ℎ2)

+ 𝑎22(2𝑥2ℎ2 + ℎ2
2) + 𝑏1ℎ1 + 𝑏2ℎ2

=
[
𝑥1 𝑥2

] [
2𝑎11 (𝑎12 + 𝑎21)

(𝑎12 + 𝑎21) 2𝑎22

] [
ℎ1
ℎ2

]
+ [

𝑏1 𝑏2
] [
ℎ1
ℎ2

]

+ 1
2

[
ℎ1 ℎ2

] [
2𝑎11 𝑎12 + 𝑎21

𝑎12 + 𝑎21 2𝑎22

] [
ℎ1
ℎ2

]

=x⊤(A⊤ +A)h + b⊤h + 1
2h
⊤(A⊤ +A)h

=
𝜕 𝑓
𝜕x⊤

h + 1
2h
⊤ 𝜕2 𝑓
𝜕x𝜕x⊤

h

(25.37)

Once again we can address the question of extrema. Consider the case of a maximum.
Regardless of the direction h, we must get a no increase in 𝑓 . This requires the gradient
vector be 0. This is a first-order necessary conditition. It also requires the hessian matrix
be nonpositive definite. This is a second-order necessary conditition. If in addition the
hessian matrix is negative definite, we have a global maximum of this quadratic function.

Why Do the Interactions Matter?

The first order conditions appear natural: they just carry order the intuition from the
unary case. That is, they require that in each considered direction, the function is (locally)
flat. This is obviously a necessary condition to be at an extremum.

Unfortunately, similar reasoning for the curvature does not take us far enough. It is
true for example that if a function 𝑓 is be convex at a minimizer, it must be convex in each
variable individually. However, the way the variables interact matters as well and cannot

Copyright ©2008–2023 Alan G. Isaac – 639 – Report typos to aisaac@american.edu



Lecture: Quadratic Forms

be ignored.
To illustrate, consider the quadratic form associated with the matrix

[ 1.0 −1.5−1.5 1.0
]
. That

is, 𝑞 = ⟨𝑥, 𝑦⟩ ↦→ 𝑥2 + 𝑦2 − 3𝑥𝑦. The first order necessary condition of a zero gradient is
satisfied at ⟨0, 0⟩. Additionally, note that 𝑞[𝑥, 0] = 𝑥2 and 𝑞[0, 𝑦] = 𝑦2, so at the stationary
point 𝑞 is convex in each variable individually. This implies that each associated unary
function is minimized at the origin, with a value of 0. Nevertheless, 𝑞[1, 1] = −1 < 0, so 𝑞
is not minimized at the origin. In fact, 𝑞[𝑥, 𝑥] = −𝑥2, so we can clearly make the function
value as negative as desired. This additional exploration shows that 0 is a saddle point.

Recommended Reading

Simon and Blume (1994, ch.16)

Problems for Review

Exercise 25.4 Suppose we have the matrices

x =

[
2
4

]
A =

[
1 2
3 4

]

Calculate x⊤Ax.

Exercise 25.5 Consider a 3 × 3 matrix A = [𝑎𝑖 𝑗]. Construct all the principal minors of
each order. Which are leading principal minors?

Exercise 25.6 Find the definiteness of each of the following matrices.[
1 0
0 1

] [
1 0
0 0

] [
0 0
0 1

] [
1 0
0 −1

]
[−1 0

0 −1

] [−1 0
0 0

] [
0 0
0 −1

] [−1 0
0 1

]

Computational Exercise 25.1 Create a function innerprod[x,y] that computes the dot
product of two 𝑁-vectors by iterating over the elements. Compare with the built in
functionality for producing dot products by matrix multiplication.
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