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LECTURE

Choice Under Risk

There is an early history of economic thought on risk-taking behavior, in the work of

Bernoulli (1736), Fisher (1930), Keynes (1921), Menger (1934), Knight (1921), and Ramsey

(1931), as well as important developments by Friedman and Savage (1948), Marschak

(1950), and Arrow (1951) that parallel the von Neumann-Morganstern contribution. This

concentrated on choice among lotteries, but the ideas spread to other decision-making

situations. What has come to be known as Behavioral Decision Theory had its origins in

the von Neumann and Morgenstern (1947) treatise on choice under uncertainty and game

theory. In the following two decades, behavioral science and cognitive psychology came

of age, with the participation of notable economists such as Allais (1953), Chipman (1960),

Marschak (1950), Papandreau (1960), and Simon (1959).

Problematic Evidence: ? found that 70 percent of subjects report that they would

prefer a 3/4 chance of losing nothing and 1/4 chance of losing $6,000 to a 2/4 chance of

losing nothing and 1/4 chance each of losing 4, 000 or 2, 000. Because the preferred lottery

here is a mean-preserving spread of the less-preferred lottery, the responses of 70 percent

of the subjects are inconsistent with the standard concavity assumptions.
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Lecture: Choice Under Risk

1.1 Fair Odds

In the lifetime-consumption lottery, a consumer is endowed with an uncertain outcome

for lifetime consumption. Consider a world with two states, state 1 and state 2, with

probabilities 𝑝1 and 𝑝2 = 1 − 𝑝1. The consumer’s consumption outcome depends on the

state of the world.

The consumer faces a consumption lottery with only two possible outcomes: outcome

𝑐𝑒1 with probability 𝑝1, and outcome 𝑐𝑒2 with probability 1−𝑝1. Equivalently, the consumer

has a state-dependent consumption endowment, 𝑐 =
〈
𝑐𝑒1 , 𝑐

𝑒
2
〉
, with an associated prob-

ability tuple 𝑝 = ⟨𝑝1, 1 − 𝑝1⟩. With this uncertain consumption endowment, the mean

consumption outcome is therefore

�̄�𝑒
def
= 𝑝 · 𝑐𝑒 =

∑
𝑖

𝑝𝑖𝑐
𝑒
𝑖

= 𝑝1𝑐
𝑒
1 + (1 − 𝑝1)𝑐𝑒2

(1.1)
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1.1. Fair Odds

Find all the values of ⟨𝑐1, 𝑐2⟩ that have this same mean. These satsify the following

equality.

�̄�𝑒 = 𝑝 · 𝑐 =

∑
𝑖

𝑝𝑖𝑐𝑖

= 𝑝1𝑐1 + (1 − 𝑝1)𝑐2

(1.2)

This is the equation of a straight line. Use this equation to solve for 𝑐2 in terms of 𝑐1.

𝑐2 = − 𝑝1

1 − 𝑝1
𝑐1 +

�̄�𝑒

1 − 𝑝1
(1.3)

So if we plot 𝑐2 as a function of 𝑐1, the slope is −𝑝1/(1 − 𝑝1).

The odds of an outcome is the ratio of the probability it occurs to the probability it

does not occur. So the odds of outcome 𝑐𝑒1 is 𝑝1/(1 − 𝑝1). The slope of this line is minus

the odds of 𝑐𝑒1.

⟨𝑐𝑒1 ,𝑐𝑒2⟩

𝑝1 𝑐1 +(1−
𝑝1 )𝑐2 =

𝑐 𝑒

𝑐2

𝑐1

Figure 1.1: Fair-Odds Locus

Odds can be called “fair” when the expected gain from swapping lotteries is zero. In

this sense, the fair-odss line represents all of the consumption lotteries that are fair relative

to the endowment.
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Lecture: Choice Under Risk

For the moment, measure how uncertain we are about the outcome by the variance.

Compute the variance of any point ⟨𝑐1, 𝑐2⟩ on the fair-odds line.

var[𝑐] def
= 𝑝 · (𝑐 − 𝜇)2 =

∑
𝑖

𝑝𝑖(𝑐𝑖 − 𝜇)2 (1.4)

By inspection, this is minimized (at 0) by setting ⟨𝑐1, 𝑐2⟩ = ⟨𝜇, 𝜇⟩. This point is clearly on

the fair-odds line: 𝑝1𝜇 + (1 − 𝑝1)𝜇 = 𝜇.

⟨𝑐𝑒1 ,𝑐𝑒2⟩

cer
tai

nty
loc

us

〈
𝑐
𝑓

1 ,𝑐
𝑓

2

〉

𝑐2

𝑐1

Figure 1.2: Minimum Variance
The point of intersection of the fair-odds locus and the certainty locus has the same
expected return but no uncertainty.

A risk neutral consumer is indifferent between all lotteries with the same mean. How-

ever a risk averse consumer prefers less uncertainty about outcomes. Risk aversion means

that among all bundles with equal expected value, you prefer the sure thing. It follows

immediately that if the fair-odds locus also represents the available market trade-offs, risk

averse individuals will eliminate all risk by trading in the market along this tradeoff until

they reach the certainty locus. So a risk-averse consumer can use the certainty locus to

find the most preferred point on any fair odds locus.
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1.1. Fair Odds

Imagine we can draw indifference curves for this consumer in ⟨𝑐1, 𝑐2⟩ space. The curve

that passes through ⟨�̄�, �̄�⟩ must stay above the fair odds locus at all other points. So risk

aversion has a simple graphical corollary.

endowment

cer
tai

nty
loc

us

sure thing

𝑐2

𝑐1

Figure 1.3: Risk Aversion
For a risk averse consumer, the indifference curve through the sure thing must lie
above the rest of the fair-odds locus.

Exercise 1.1 A risk-averse person with a dollar offered a game with fair odds: based on
a coin flip, the dollar is lost or doubled. Explain why this game will be rejected.
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Lecture: Choice Under Risk

1.1.1 Risky Utility

Economists think of consumers as deriving utility from their consumption. To make this

concrete, introduce a utility function 𝑢 that is continuous, strictly increasing, and strictly

concave. Note how the concavity implies that expected utility �̄� is below the utility of the

mean outcome 𝑐𝑒 . That is, the concavity of the utility function implies that the consumer

is risk averse.

c1c2 ccce

u[c1]

u[c2]

u[c]

u

Figure 1.4: Geometry of Risk Aversion
The consumer gets 𝑐1 with probability 𝑝1 and 𝑐2 with prob-
ability 𝑝2, with a mean outcome of 𝑐. The certainty equiv-
alent is 𝑐𝑐𝑒 , and 𝑐 − 𝑐𝑐𝑒 is the maximum risk premium the
consumer could pay just to elminate all risk.

Remark 1.1 That 𝑢 is continuous implies the certainty equivalent exists (by the interme-

diate value theorem). That 𝑢 is also strictly increasing ensures that the certainty equivalent

is unique. That 𝑢 is also strictly concave ensures that the certainty equivalent is less than

mean consumption.

Exercise 1.2 Consider a utility function 𝑢 : R≥0 → R≥0 that is differentiable, strictly
increasing, and strictly concave. Prove that if 𝑢 assigns one lottery (𝑝) higher utility than
another( 𝑞), then for 𝑏 > 0, so does the affine tranformation 𝑎 + 𝑏𝑢. Can you find a strictly
increasing transformation 𝑡 : R≥0 → R≥0 that will not do this?
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1.2. Insurance

1.2 Insurance

If you are willing to pay something to reduce your risk, you may look for insurance. An

insurance contract has a premium that you must pay in advance, but in return you can get

payout in the bad state of the world.

Suppose 𝑐1 is the real value of consumption in the good state of the world, but in

the bad state of the world it is 𝑐2 = 𝑐1 − Δ. Here Δ = 𝑐1 − 𝑐2 is a possible loss to the

consumer. Now introduce the cost (𝛿) of fully insuring against this loss (i.e., the cost of

certainty). The consumer may choose to partially insure (or even to over insure). If she

pays an insurance premium 𝛼𝛿 and incurs loss Δ, she receives the indemnity 𝛼Δ from the

insurance company.

Table 1.1

Probability Outcome
𝑝1 𝑐1 − 𝛼𝛿
1 − 𝑝1 𝑐2 − 𝛼𝛿 + 𝛼Δ

Comment: The contract is actuarially fair if 𝛿 = (1 − 𝑝1)Δ, so that the premium equals

the expected value of the payout.
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Lecture: Choice Under Risk

Assume the consumer maximizes expected utility, and consider the following insurance

problem.

max
𝛼

𝑝1 𝑢[𝑐1 − 𝛼𝛿] + (1 − 𝑝1) 𝑢[𝑐2 − 𝛼𝛿 + 𝛼Δ] (1.5)

To produce the first order necessary condition (FONC) for an extremum, set the first-

order derivative to 0. You should use your standard rules of differentiation, including the

sum rule and the chain rule.

−𝛿𝑝1 𝑢
′[𝑐1 − 𝛼𝛿] + (1 − 𝑝1)(Δ − 𝛿) 𝑢′[𝑐2 − 𝛼𝛿 + 𝛼Δ] = 0 (1.6)

Equivalently, since 𝑐2 = 𝑐1 − Δ,

−𝛿𝑝1 𝑢
′[𝑐1 − 𝛼𝛿] + (1 − 𝑝1)(Δ − 𝛿) 𝑢′[𝑐1 − 𝛼𝛿 − (1 − 𝛼)Δ] = 0 (1.7)

In this expression, the derivative function 𝑢′ is evaluated at two different places: the state

1 outcome 𝑐1 − 𝛼𝛿, and that state 2 outcome 𝑐1 − 𝛼𝛿 − (1 − 𝛼)Δ.

Note: If the contract is actuarially fair, then 𝑝1𝛿 = (1− 𝑝1)(Δ− 𝛿) so the FONC becomes

𝑢′[𝑐1 − 𝛼𝛿] = 𝑢′[𝑐1 − 𝛼𝛿 − (1 − 𝛼)Δ] (1.8)

This requires two equal values of 𝑢′. Since 𝑢 is strictly concave, 𝑢′ is strictly decreasing, so

the FONC requires the two inputs to be equal. So the consumer must set 𝛼 = 1 to satisfy

the FONC.

When insurance is actuarially fair, the result is complete income smoothing!
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