
Version Control Using Subversion

Version Control Using Subversion 1 / 27



What Is Version Control?

Version control is also known as revision control. Version control is provided by
a version control system (VCS).
VCS:

lets you track how your files change over time.

lets you back up every version of a file.

allows branching and merging

lets you revert to earlier versions of a file.

lets you work with other people on the same repository of files

lets you see who made which changes

What kind of files? Text files (including source code, LaTeX, reStructuredText,
etc)
Usually you will not put binary files under version control.

Version Control Using Subversion 2 / 27



Why Subversion?

Collaboration Several people can simultaneously contribute to a single
document. Documents are not locked!

Availability Documents are securely accessible in a single place: the
repository. This is the official master copy.

History All committed versions of a document are maintained forever

Version Control Using Subversion 3 / 27



Collaboration

Versions of a document are tracked in a single place, the repository

Documents are accessible over the internet (via SSH tunnel)

Changes made to the same document by different users are usually
merged automatically.

Occasionally this must be done manually.

Hint: use frequent updates and the UMUTC workflow to minimize manual
merging. (Update, Modify, Update, Test, Commit)

Version Control Using Subversion 4 / 27



History

SVN tracks the entire evolution of a document.

additions, deletions, and changes to a document are tracked on a
line-by-line basis

incremental changes to a document are committed under a new revision
number each time

the date and time of a new revision is maintained along with the user who
committed it

Version Control Using Subversion 5 / 27



Using Subversion: Server Side

We will not be concerned with the server side.
Creating a Repository
A class depository has already been created for you.
Repository URL has the format:
svn checkout

https://subversion.american.edu/svn/econ450650s2015
econ450s2015
--username <userid>

--password <pw>

<userid> substitute your username

<userid> substitute your password

host The host where the repository resides

project The name of the project in the repository

Version Control Using Subversion 6 / 27



Working Copy

working copy: an ordinary directory on your computer, but SVN adds to
special subdirectories named .svn.

checkout
pick a name for your working directory.
svn checkout [URL] [working directory
name]

This command gets the latest versions files contained in the
repository associated with URL (as described in the previous
slide).

Adding and Removing Files
svn add [file]
svn delete [file]

IMPORTANT: files are not actually added to or deleted from the repository
until your next commit.

IMPORTANT: do not use spaces in filenames (to keep things simple)

Version Control Using Subversion 7 / 27



Keep Your Code Current

Use the following sequence when you start working on your code.

update your working copy

make changes and test them

update your working copy

test that your working copy still functions

commit your changes

Version Control Using Subversion 8 / 27



Workflow

Follow the UMUTC workflow:

update
modify
update
test
commit

Version Control Using Subversion 9 / 27



Update

You can update all files in your working directory to the latest revision in the
repository, or just a single file. The update command can also fetch a
revision different than the latest revision with the -r flag.

svn update

svn update [filename]

svn update -r n [filename]

Here n is the desired revision number.

Version Control Using Subversion 10 / 27



Modify

Edit your working copy (and save your changes to the file)

Add or delete files.

Version Control Using Subversion 11 / 27



Update

After saving your changes, close the application you are using to edit the
file. (This is just to ensure your application does not lock the file and that
you end up working on the changed version.)

Again run svn update to ensure your changes are compatible. (See
the section on Merging.)

Open the file in your editor.

Version Control Using Subversion 12 / 27



Test

if you will commit code that should function, test that it does

Version Control Using Subversion 13 / 27



Committing Changes to Existing Files

1 After editing files and saving your changes, but before committing them,
do another update (following the steps above) to make sure you changes
are compatible with any commits that took place while you were working.

2 commit your changes to the project directory:
svn commit message="a commit message"

If you omit the message, Subversion will try to start an editor to ask for a
commit message. If you also have not set your editor, Subversion will refuse to
commit.

Version Control Using Subversion 14 / 27



Precaution

Make sure (!!) you save your work and close your editor before you update or
commit.

Version Control Using Subversion 15 / 27



Backing Out of a Commit

Suppose you commit code that you should not have: it breaks everything. SVN
lets you back out of that commit as follows.

1 extract the old version
2 re-commit the old version

E.g., suppose version 314 was the last "good" version of the code. Return your
working directory to that version and recommit as follows:
svn update -r314

svn commit -message "Discard a stupid commit."

Version Control Using Subversion 16 / 27



Merging

Suppose you update after you have changed your copy, but the master copy
has changed as well. SVN tries to merge the two sets of changes.
Usually the changes are to unrelated areas of the file, and this succeeds.
If the changes overlap, SVN will merge what it can, and then ask you what to
do about the rest.
You may choose to

accept the repository’s changes (’tf’, or "theirs-full").

override the repository’s changes (’mf’, "mine-full")

postpone the decisions (’p’)

Version Control Using Subversion 17 / 27



Conflicts

Postponement is the safest action, but it will mark affected files in a "conflicted"
state and insert blocks that look like this:
@@ -1 +1,5 @@

def foo():
+<<<<<<< .mine
+ bar1();
+=======
+ bar2();

+>>>>>>> .r314

Say this lines are in foo.py. They mean that your copy of foo.py changed
your function foo to call a function bar1, whereas someone already changed
the repository, in revision 314, in exactly the same place, with foo calling
bar2. You will have to resolve this conflict before you can commit your
changes.

Version Control Using Subversion 18 / 27



Warning

You can pick your version, or the repository version, or some other resolution.
When you finish, run svn resolved to tell SVN that you have resolved the
conflicts. Then you can commit your changes.

It is a good idea to run svn diff after an automatic merge. Auto-
matic merging very seldom fails to be correct, but you want to catch any
problem however rare.

Merging by hand is unpleasant. This can usually be avoided by frequent
updating. Merging by hand is particulary unpleasant when a lot of code
is involved. This can usually be avoided by frequent committing.
If you must make many changes to a file, it is a good idea to warn your
teammates, who might have pending modifications that they will want
to commit before you act.

Version Control Using Subversion 19 / 27



Helpful Information

svn status gives information about which files are changed or new.

svn log [file] displays commit messages for all revisions, in
chronological order, along with the associated revision number.

svn annotate [file] shows which users made which changes, line by
line with the revision number and associated user name.

svn help [command] displays help on any command

Version Control Using Subversion 20 / 27



GUI Subversion Clients

TortoiseSVN For Windows

Subclipse For Eclipse IDE

Netbeans contains a Subversion integration module

Version Control Using Subversion 21 / 27



Subversion Red Book

Version Control with Subversion. CollinsSussman, Ben and Brian W.
Fitzpatrick and C. Michael Pilato.
http://svnbook.redbean.com/

Version Control Using Subversion 22 / 27

http://svnbook


Example: Adding a New Folder

This example uses the Windows cmd shell. Mac and Linux users will just use
their bash shell instead.

open a command shell (on Windows: Start > All Programs > Accessories
> Command Prompt)
use the cd command to change to the folder holding your working copy
http://www.wikihow.com/
Change-Directories-in-Command-Prompt

you should always update before making changes, so ask Subversion to
update your working copy by entering svn update

use Subversion to create your personal directory by entering svn
mkdir yourNewFolderName

finally, ask Subversion to commit your new personal directory to the
repository by entering svn commit -m "committing
personal directory".
note: the string folowing -m is just a message, but Subversion will require
you to include a message when you commit.

Version Control Using Subversion 23 / 27

http://www.wikihow.com/Change-Directories-in-Command-Prompt
http://www.wikihow.com/Change-Directories-in-Command-Prompt


TortoiseSVN

Windows users may find it useful to use TortoiseSVN.
1 Download TortoiseSVN (32bit or 64bit, depending on your operating

system): http://tortoisesvn.net/downloads.html (Do
NOT (!!!) use the advertisement links near the top of the page.)

2 Run the TortoiseSVN installer you receive from the download. (You need
to have administrator privileges to do this. Unless you turned them off,
you should have them, assuming you are on your own computer.) During
installation, be sure that you also install the command-line client tools!
(The default installation will not include it; you need to add it in the
Custom Setup dialog.)

Version Control Using Subversion 24 / 27

http://tortoisesvn.net/downloads.html


TortoiseSVN ...

1 Create your "working copy" of our repository. This is where you will work
on your code. Decide where on your computer you want to keep your
code. (Wherever it is now, you will move it to this new place.) For an
example, see http://tortoisesvn.net/docs/release/
TortoiseSVN_en/tsvn-dug-checkout.html (Replace the
first two lines appropriately.) Click OK.

2 Now add an existing code to your new working copy and commit it. (Just
drag your files into the new folder, SVN add them, and SVN commit them.
http://tortoisesvn.net/docs/release/TortoiseSVN_
en/tsvn-dug-add.html http://tortoisesvn.net/docs/
release/TortoiseSVN_en/tsvn-dug-commit.html

Version Control Using Subversion 25 / 27

http://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-dug-checkout.html
http://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-dug-checkout.html
http://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-dug-add.html
http://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-dug-add.html
http://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-dug-commit.html
http://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-dug-commit.html


Locking

If the likelihood of conflicts becomes large enough for some files, users of a
Subversion repository can agree to lock those files while working on them.
Here is some background: http://svnbook.red-bean.com/
nightly/en/svn.advanced.locking.html

Version Control Using Subversion 26 / 27

http://svnbook.red-bean.com/nightly/en/svn.advanced.locking.html
http://svnbook.red-bean.com/nightly/en/svn.advanced.locking.html


Distributed Version Control

Subversion uses a centralized model for version control. Distributed version
control systems (especially git) have become very popular. Each has
advantages and disadvantages.
The arguments over the best approach continue:

http://www.ianbicking.org/
distributed-vs-centralized-scm.html

http://www.developer.com/open/subversion-1.
8-gits-new-features.html

Version Control Using Subversion 27 / 27

http://www.ianbicking.org/distributed-vs-centralized-scm.html
http://www.ianbicking.org/distributed-vs-centralized-scm.html
http://www.developer.com/open/subversion-1.8-gits-new-features.html
http://www.developer.com/open/subversion-1.8-gits-new-features.html

